

UNIT-I Algebra

Your Success is Our Goal ..

SERVICES AVAILABLE FOR PG TRB EXAM

- Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- **Online Recorded Video Classes**
- **Online Test**
- **Question Bank**
- 🔶 Regular Classes

tcaexamguide 庨

Teacher's Care Academy 🗾

www.tcaexamguide.com

tcaexamguide@gmail.com M

ALGEBRA

PG TRB (2025-2026)

UNIT-1 FIRST EDITION

TEACHER'S CARE PUBLICATION 38/23, Vaigundaperumal Koil Street,Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

Contents

1	Grou	Group Theory		
	1.1	Groups and Some Examples	1	
	1.2	Cyclic groups	11	
	1.3	Permutation Group	17	
	1.4	Cosets and Lagrange's Theorem	20	
	1.5	Cosets	22	
	1.6	Homomorphism	25	
	1.7	Properties of homomorphisms	25	
	1.8	Normal subgroup	30	
	1.9	Quotient groups	32	
	1.10	Isomorphism theorems	35	
	1.11	Sylow subgroups	44	
	1.12	Finite Abelian groups	48	
	1.13	Objective Questions	51	
2	Ring Theory			
2	ming	•	59	
	2.1	Basic Properties Of Rings	59	
	2.2	Factorizing In Integral Domains	64	
	2.3	Euclidean domains and principal ideal domains	71	
	2.4	Homomorphisms and factor rings	80	
	2.5	Objective Questions	97	

3	Field	d Theory	100	
	3.1	Field Extensions	100	
	3.2	Finite fields	105	
	3.3	Splitting Fields and Normal Extensions	111	
	3.4	Separable Extensions	116	
	3.5	Galois Theory	118	
	3.6	Objective Questions	121	
4	Vect	Vector Spaces 12		
	4.1	Vector Spaces: Definition and Examples	124	
	4.2	Linear Combination, Linear Independence and Dependence	131	
	4.3	Basis of a Finite Dimensional Vector Space	143	
5	Line	ear Transformations	147	
	5.1	Fundamental Spaces associated with a Matrix	147	
	5.2	Rank - Nullity Theorem	149	
	5.3	Definition and Basic Properties of Linear Transformations	153	
	5.4	Matrix of a linear transformation	172	
6	Dua	I Space & Inner Product Spaces	184	
	6.1	Linear Functional	184	
	6.2	The Double Dual	190	
	6.3	Definition and Basic Properties of Inner Product Spaces	193	
	6.4	Gram-Schmidt Orthonormalization Process	207	
	6.5	QR Decomposition	210	
7	Eige	envalues and Eigenvectors	214	
	7.1	Definition and Introduction	218	
	7.2	Diagonalizability	227	
	7.3	Schur's Unitary Triangularization (SUT)	230	

	7.3.1	Diagonalizability of Normal Matrices	233
7.4	Cayley	/ Hamilton Theorem	237
7.5	Object	tive Questions	240

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER)

<u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

UNIT I: ALGEBRA

SYLLABUS

Groups – Examples – Cyclic Groups – Permutation Groups – Lagrange's theorem – Normal subgroups – Homomorphism – Cayley's theorem – Cauchy's theorem – Sylow's theorems – Finite Abelian Groups. Rings – Integral Domain – Field – Ring Homomorphism – Ideals and Quotient Rings – Field of Quotients of Integral domains – Euclidean Rings – Polynomial Rings – Unique factorization domain. Fields – Extension fields – Elements of Galois theory – Finite fields. Vector Spaces – Linear independence of Bases – Dual spaces – Inner product spaces – Linear transformations – Rank – Characteristic roots – Matrices – Canonical forms – Diagonal forms – Triangular forms – Nilpotent transformations – Jordan form – Quadratic forms and Classification – Hermitian, Unitary and Normal transformations.

<u>REFERENCE BOOKS:</u>

- 1) Herstein, I. N. Topics in Algebra. 2nd Edition, Wiley, 1975.
- 2) Lang, Serge. Algebra. Revised 3rd Edition, Springer, 2002
- 3) Hoffman, Kenneth, and Ray Kunze. Linear Algebra. 2nd Edition, Pearson, 1971.
- 4) Fraleigh, John B. A First Course in Abstract Algebra. 7th Edition, Pearson, 2002.
- 5) Dummit, David S., and Richard M. Foote. Abstract Algebra. 3rd Edition, Wiley, 2004
- 6) Artin, Michael. Algebra. 2nd Edition, Pearson, 2011.
- Strang, Gilbert. Introduction to Linear Algebra. 5th Edition, Wellesley-Cambridge Press, 2016.
- 8) Jacobson, Nathan. Basic Algebra I. 2nd Edition, Dover Publications, 2009.
- 9) Rotman, Joseph J. Advanced Modern Algebra. 3rd Edition, AMS, 2015.
- 10) Axler, Sheldon. Linear Algebra Done Right. 3rd Edition, Springer, 2015.

Chapter 1

Group Theory

1.1 Groups and Some Examples

Example 1.1.1: This is an motivating example for the definition of groups. Let us consider $(\mathbb{Z}, +)$, where \mathbb{Z} is the set of all integers, i.e.,

$$\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\},\$$

+ is a binary operation on \mathbb{Z} , i.e.,

$$+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
 defined by $+: (a, b) \mapsto a + b$.

Observations in this example.

1. Let a, b be any two integers. Then a + b is clearly an integer.

This property is called *closure*. If a set with a binary operation has only this property, then the set is called a **magma** or a **quasi group**.

2. Let a, b, c be three integers. Then what is a + b + c?

We know how to operate two integers but here the task is to add three integers. We can define a + b + c as

• a + b + c = (a + b) + c (or)

• a + b + c = a + (b + c).

This property is called *associativity*. If a set with a binary operation has upto this property, that is, satisfies closure and associative, then the set is called a **semi group**.

If $(a + b) + c \neq a + (b + c)$, then we cannot define addition on 3 elements. But in \mathbb{Z} , (a + b) + c = a + (b + c).

3. There is a magic number in \mathbb{Z} say 0, because

$$0 + a = a + 0 = a$$

for all $a \in \mathbb{Z}$.

This property is called *existence of identity*, and 0 is called an *identity element*. If a set with a binary operation has upto this property, that is, satisfies closure, associative and existence of identity, then the set is called a **monoid**.

4. For every element $a \in \mathbb{Z} \setminus \{0\}$, there is an element $-a \in \mathbb{Z} \setminus \{0\}$ such that

$$a + (-a) = (-a) + a = 0.$$

For example, for $5 \in \mathbb{Z}$, there exists $-5 \in \mathbb{Z}$ such that 5 + (-5) = 0 and similarly for $-8 \in \mathbb{Z}$, there exists $8 \in \mathbb{Z}$ such that -8 + 8 = 0.

This property is called *existence of inverse*. If a set with a binary operation has upto this property, that is, satisfies closure, associative, existence of identity and existence of inverse, then the set is called a **group**.

5. In \mathbb{Z} , we see that 3 + 7 = 7 + 3 = 10. In general, a + b = b + a for all $a, b \in \mathbb{Z}$.

This property is called *commutativity*. If a set with a binary operation has upto this property, that is, satisfies closure, associative, existence of identity, existence of inverse and commutativity, then the set is called an **abelian group** or a **commutative group**.

2

Group

Definition 1.1.1 (Group). A non-empty set G together with a binary operation *, i.e.,

$$\star:G\times G\to G$$

is said to be a group, if

1. (G, \star) satisfies closure property, i.e.,

for every $a, b \in G \Rightarrow a \star b \in G$.

2. (G, \star) satisfies associative property, i.e.,

for every
$$a, b \in G$$
, $(a \star b) \star c = a \star (b \star c)$.

3. There exists an element $e \in G$ such that

 $a \star e = e \star a = a$

for all $a \in G$. This *e* is called an identity element.

4. For every $a \in G$, there exists $a^{-1} \in G$ such that

$$a \star a^{-1} = a^{-1} \star a = e.$$

This a^{-1} is called an inverse of a and vice versa.

Note 1: (G, \star) is called a group or we can say G is a group under \star .

Definition 1.1.2 (Abelian group). If in a group (G, \star) , if for every $a, b \in G$,

$$a \star b = b \star a$$

is satisfied, then (G, \star) is called an abelian group or a commutative group.

Example **1.1.2:** Prove that $(\mathbb{Z}, +)$ is an abelian group.

- 1. For any integers a & b, a + b is an integer.
- 2. Clearly, $(\mathbb{Z}, +)$ has associativity property.
- 3. $0 \in \mathbb{Z}$ (Identity)
- 4. For every $a \in \mathbb{Z}$, there exists $-a \in \mathbb{Z}$ such that a + (-a) = (-a) + a = 0.
- 5. For every $a, b \in \mathbb{Z}$, a + b = b + a.

Example 1.1.3: Let $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z} \quad \& \quad b \neq 0 \}$. Prove that $(\mathbb{Q}, +)$ is also an abelian group.

1. Let
$$p, q \in \mathbb{Q}, p = \frac{a_1}{b_1}, q = \frac{a_2}{b_2}$$
. Then

$$p + q = \frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2} \in \mathbb{Q}.$$
2. For $p, q, r \in \mathbb{Q}, p = \frac{a_1}{b_1}, q = \frac{a_2}{b_2}, r = \frac{a_3}{b_3}.$

$$(p + q) + r = \left(\frac{a_1}{b_1} + \frac{a_2}{b_2}\right) + \frac{a_3}{b_3} = \left(\frac{a_1b_2 + a_2b_1}{b_1b_2}\right) + \frac{a_3}{b_3} = \frac{a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2}{b_1b_2b_3};$$

$$(1.1)$$

$$p + (q + r) = \frac{a_1}{b_1} + \left(\frac{a_2}{b_2} + \frac{a_3}{b_3}\right) = \frac{a_1}{b_1} + \left(\frac{a_2b_3 + a_3b_2}{b_2b_3}\right) = \frac{b_2b_3a_1 + a_2b_1b_3 + a_3b_1b_2}{b_1b_2b_3}.$$

$$(1.2)$$

From (1.1) and (1.2),

$$(p+q) + r = p + (q+r).$$

3. 0 is the identity, since

$$p + 0 = \frac{a_1}{b_1} + 0 = 0 + \frac{a_1}{b_1} = 0 + p = p.$$

4. For every $p = \frac{a_1}{b_1} \in \mathbb{Q}$, there exists $-\frac{a_1}{b_1} \in \mathbb{Q}$ such that

$$\frac{a_1}{b_1} + \frac{-a_1}{b_1} = \frac{-a_1}{b_1} + \frac{a_1}{b_1} = 0.$$

SCARE .

5. For $p, q \in \mathbb{Q}$, we have

$$p + q = \frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2} = \frac{a_2b_1 + a_1b_2}{b_1b_2} = \frac{b_1a_2 + b_2a_1}{b_2b_1} = \frac{a_2}{b_2} + \frac{a_1}{b_1} = q + p.$$

Therefore, $(\mathbb{Q}, +)$ is an abelian group.

Example 1.1.4: The set of all real numbers, \mathbb{R} , forms a group under +, i.e., $(\mathbb{R}, +)$ is a group.

The following examples illustrate the properties of a group.

Example 1.1.5: Consider $(\mathbb{Z}, -)$.

- 1. Let $a, b \in \mathbb{Z}$. Then $a b \in \mathbb{Z}$ and thus closure property holds.
- **2.** Let a = 5, b = -6 and c = -2. Then

$$(a-b) - c = (5 - (-6)) - (-2) = (5+6) + 2 = 13$$
 and

$$a - (b - c) = 5 - ((-6) - (-2)) = 5 - (-6 + 2) = 5 - (-4) = 5 + 4 = 9.$$

It is clearly visible that

$$(a-b) - c \neq a - (b-c)$$

for some $a, b, c \in \mathbb{Z}$. Thus, associativity does not hold in $(\mathbb{Z}, -)$.

Hence, $(\mathbb{Z}, -)$ is a magma or quasi group.

Example 1.1.6: Consider (\mathbb{Z}, \star) where \star is defined as $a \star b = a + b + ab$.

- 1. Let $a, b \in \mathbb{Z}$. Then $a \star b = a + b + ab \in \mathbb{Z}$. Hence, (\mathbb{Z}, \star) has closure property.
- 2. Let $a, b, c \in \mathbb{Z}$. Then

$$(a\star b)\star c = (a+b+ab)\star c = a+b+ab+c+(a+b+ab)c = a+b+c+ab+ac+bc+abc$$
 and

$$a \star (b \star c) = a \star (b + c + bc) = a + b + c + bc + a(b + c + bc) = a + b + c + bc + ab + ac + abc.$$

It is clear that $(a \star b) \star c = a \star (b \star c)$ for all $a, b, c \in \mathbb{Z}$.

3. We need to identify if some $e \in \mathbb{Z}$ exists. We expect

$$a \star e = a + e + ae = a$$
 & $e \star a = e + a + ea = a$.

Thus,

$$a + e + ae + (-a) = a + (-a) = 0 \quad \text{since } a \in \mathbb{Z} \Rightarrow -a \in \mathbb{Z}.$$
$$e + ae = 0$$
$$e(1 + a) = 0 \quad \text{using distributivity in integers}$$
$$e = 0 \quad \text{since } 1 + a \neq 0 \text{ for all } a \in \mathbb{Z}.$$

Thus, e = 0 is the required identity with respect to \star .

4. For $a \in \mathbb{Z}$, we need to check if there exists $b \in \mathbb{Z}$ such that $a \star b = 0$. Suppose for $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that $a \star b = 0$. Then,

$$a \star b = a + b + ab = 0$$
$$\Rightarrow b + ab = -a$$
$$\Rightarrow b(1 + a) = -a$$
$$\Rightarrow b = \frac{-a}{1 + a}.$$

But $\frac{-a}{1+a}$ need not be an integer for every $a \in \mathbb{Z}$. Thus, inverse axiom does not hold. Hence, (\mathbb{Z}, \star) is a monoid.

Example 1.1.7: Consider (\mathbb{Q}, \star) , where \star is defined as $a \star b = a + b + ab$.

Closure, associative and identity axiom holds clearly from the previous example. Let us verify inverse axiom now. Suppose for $a \in \mathbb{Q}$, there exists $b \in \mathbb{Q}$ such that $a \star b = 0$. Then,

$$a \star b = a + b + ab = 0$$
$$\Rightarrow b + ab = -a$$
$$\Rightarrow b(1 + a) = -a$$
$$\Rightarrow b = \frac{-a}{1 + a}.$$

This *b* is not defined for a = -1. Thus, inverse does not exist when a = -1. Hence (\mathbb{Q}, \star) does not form a group but it is a monoid.

Let us now restrict the definition of \star to $\mathbb{Q}-\{-1\}$ and examine if it forms a group.

Associativity, existence of identity and existence of inverse are satisfied from the previous discussions but what about closure? We will fix $a \in \mathbb{Q} - \{-1\}$. Let us find the value of *b* for which we get $a \star b = -1$.

$$a \star b = -1 \Rightarrow a + b + ab = -1$$

$$\Rightarrow a + b(1 + a) = -1$$

$$\Rightarrow b(1 + a) = -1 - a$$

$$\Rightarrow b = \frac{-(1 + a)}{1 + a} = -1$$

Thus for any value of $a \in \mathbb{Q} - \{-1\}$, b = -1 will give us $a \star b = -1$ but this $b \notin \mathbb{Q} - \{-1\}$. Hence $(\mathbb{Q} - \{-1\}, \star)$ satisfies closure property as well. Therefore, $(\mathbb{Q} - \{-1\}, \star)$ forms a group.

Example 1.1.8: Check (\mathbb{Z}, \star) where \star is defined as $a \star b = a + b + 2ab$ forms a group or not.

Example 1.1.9: Let

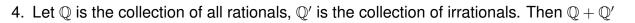
$$A = \left\{ \frac{a}{b} \mid a \text{ and } b \text{ are co-prime and } 5 \not\mid b \right\}$$

Prove (A, +) is a group.

Exercise

- 1. Let $A = \left\{ \frac{a}{b} \mid a, b \text{ are co-prime and } 5|b \right\}$. Then (A, +) is
 - (a) a group
 - (b) a monoid
 - (c) a magma

- (d) none of the above
- 2. Let \mathbb{Q} be the collection of all rational numbers. Then (\mathbb{Q}, \times) is
 - (a) a group
 - (b) a monoid
 - (c) only a magma
 - (d) only a semi group
- 3. Let \mathbb{Q}^* be the collection of all non-zero rational numbers. Then (\mathbb{Q}^*,\times) is
 - (a) a group
 - (b) only a monoid
 - (c) only a magma
 - (d) none of the above



- is
 - (a) Q
 - (b) Q'
 - (C) ℝ
 - (d) None of the above
- 5. Let \mathbb{Q}' be the collection of irrational numbers. Then $(\mathbb{Q}',+)$ is
 - (a) a group
 - (b) a magma
 - (c) a semi group
 - (d) none of the above

- 6. Let *E* be the collection of all even integers. Then (E, +) is
 - (a) a group
 - (b) a monoid
 - (c) a magma
 - (d) a semi group
- 7. Let \mathbb{F} be the collection of all continuous functions on [a, b] to \mathbb{R} . $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ is defined by

$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in [a,b]$.

Then $(\mathbb{F}, +)$ is

- (a) a group
- (b) a monoid
- (c) a semigroup
- (d) an abelian group

- 8. Let \mathbb{F} be the collection of all continuous functions on [a, b] to \mathbb{R} and $\circ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ be the composition of functions. Then the identity element in the group (\mathbb{F}, \circ) is
 - (a) f(x) = 1
 - (b) f(x) = 0
 - (c) f(x) = x
 - (d) none of the above
- 9. Let \mathbb{F} be the collection of all continuous functions on [a, b] to \mathbb{R} and $.: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ be defined by

$$(f.g)(x) = f(x)g(x)$$
 for all $x \in [a, b]$.

Then $(\mathbb{F}, .)$ is

- (a) a group
- (b) a monoid
- (c) a semigroup
- (d) none of the above

Subgroups

Definition 1.1.3. Let (G, \star) be a group and *H* is a subset of *G*. *H* is said to be a subgroup of *G* under \star if (H, \star) is itself a group.

Note 2: For any group (G, \star) , there are two groups always associated with G. They are

- **1.** (G, \star) , and
- **2.** $(\{e\}, \star)$.

Example 1.1.10: Let $(\mathbb{Z}, +)$ be a group. Consider the set of all even numbers as *H*. Clearly $H \subset \mathbb{Z}$, then (H, +) is a subgroup of $(\mathbb{Z}, +)$.

For, let $a, b \in H$, that is, both a and b are even integers. Then clearly, a + b is also an even integer, i.e., $a + b \in H$. Associativity holds trivially and 0 serves as an identity element.

For every $a \in H$, -a is the inverse of a since

$$a = 2m$$
 for some $m \in \mathbb{Z} \Rightarrow -a = 2(-m)$.

Thus, the set of all even integers under addition forms a group and thus (H, +) is a subgroup of $(\mathbb{Z}, +)$.

1.2 Cyclic groups

Observe the set of all even numbers

$$H = \{ \cdots, -6, -4, -2, 0, 2, 4, 6, \cdots \}$$
$$H = \{ \cdots, (2+2+2)^{-1}, (2+2)^{-1}, (2)^{-1}, 0, 1 \times 2, 2+2, 2+2+2, \cdots \},\$$

since $4^{-1} = -4$ in $(\mathbb{Z}, +)$.

Note **3:** Generally, in every group (G, \star) ,

 $a^2 = a \star a.$

In particular, in $(\mathbb{Z}, +)$,

$$2^2 = 2 + 2, \quad 2^3 = 2 + 2 + 2.$$

Thus, 2^3 in $(\mathbb{Z}, +)$ does not mean $2 \times 2 \times 2$ but means 2 + 2 + 2 and similarly $2^{-3} = -(2+2+2)$. Therefore,

$$H = \{\cdots, 2^{-3}, 2^{-2}, 2^{-1}, 0, 2^1, 2^2, 2^3, \cdots\}.$$

The above sort of representation is denoted by $\langle 2 \rangle$. That is,

 $H = \langle 2 \rangle$, subgroup generated by 2.

Definition 1.2.1 (Cyclic group). A group (G, \star) is said to be a cyclic group if there exists an element $a \in G$ such that $G = \langle a \rangle$, i.e., *G* is generated by a single element *a*.

Note 4:

$$\langle a \rangle = \{ \cdots, a^{-3}, a^{-2}, a^{-1}, e, a^{1}, a^{2}, a^{3}, \cdots \}$$

= $\{ \cdots, (a \star a \star a)^{-1}, (a \star a)^{-1}, (a)^{-1}, e, (a)^{-1}, (a \star a)^{-1}, (a \star a \star a)^{-1}, \cdots \}$

Definition 1.2.2 (Cyclic subgroup). Let (G, \star) be a group and let H be a subgroup of G. H is said to be a cyclic subgroup of G if there exists $a \in H$ such that $H = \langle a \rangle$.

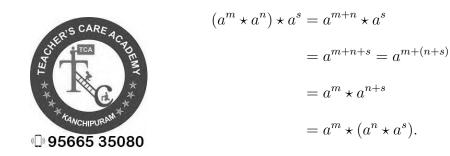
Note 5: For every group (G, \star) . Let $a \in G$. Then $\langle a \rangle$ is always a cyclic subgroup of (G, \star) .

Proof. Let $\langle a \rangle = \{ \cdots, a^{-3}, a^{-2}, a^{-1}, e, a^1, a^2, a^3, \cdots \}.$

• Let $a^m, a^n \in \langle a \rangle$. Then

$$a^m \star a^n = \underbrace{a \star a \star \cdots \star a}_{\text{m times}} \star \underbrace{a \star a \star \cdots \star a}_{\text{n times}} = a^{m+n} \in \langle a \rangle.$$

So closure property is satisfied.



Hence associative axiom holds.

- Identity element *e* trivially exists.
- For every a^n , there exists $(a^n)^{-1} \in \langle a \rangle$ such that

$$a^n \star a^{-n} = a^{n+(-n)} = a^0 = e.$$

Thus, inverse axiom is also satisfied.

• For any $a^n, a^m \in \langle a \rangle$,

$$a^n \star a^m = a^{n+m} = a^{m+n} = a^m \star a^n.$$

Thus, commutativity axiom is satisfied.

Hence, $(\langle a \rangle, \star)$ is a group and in fact an abelian group. Therefore, $\langle a \rangle$ is a cyclic subgroup of (G, \star) .

Observation 1. From the above proof, we also observe that *every cyclic group is abelian* but the converse need not be true.

UNIT- II Real Analysis

Your Success is Our Goal...

SERVICES AVAILABLE FOR PG TRB EXAM

- 🔷 Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- Online Recorded Video Classes
- 🔷 Online Test
- 🔷 Question Bank
- 🔷 Regular Classes

tcaexamguide ≽

Teacher's Care Academy 下

www.tcaexamguide.com

tcaexamguide@gmail.com M

REAL ANALYSIS

PG TRB (2025-2026)

UNIT-2 FIRST EDITION

TEACHER'S CARE PUBLICATION 38/23, Vaigundaperumal Koil Street,Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

Contents

1	Basi	cs and Metric Spaces	4
	1.1	Elementary set theory	4
	1.2	Countable sets	12
	1.3	Arithmetic of cardinalities	16
	1.4	Cantor set	19
	1.5	Cantor diagonalization process	19
	1.6	Archimedean property	21
	1.7	Real numbers as a complete ordered field	22
	1.8	Supremum and Infimum	23
	1.9	Basic definitions	25
	1.10	Definitions on \mathbb{R} and \mathbb{R}^n	26
	1.11	Open Sets and Closed Sets	28
	1.12	Closure and Interior of a set	32
	1.13	Compact sets	34
	1.14	Compact Sets on \mathbb{R}^k	35
	1.15	Seperated sets	37
	1.16	Connected sets	38
	1.17	Exercise Problems	38
2	2001	Jences & Series	13
2	2.1		
	2.1	·	
	۷.۷	Sequences on a metric space	+4

	2.3	Subsequences	. 46
	2.4	Cauchy Sequences	. 47
	2.5	Sequences of real numbers	. 48
	2.6	Monotonic Sequences	. 52
	2.7	Limit Superior and Limit Inferior (or) Maximum and minimum limits of se-	
		quences	. 53
	2.8	Infinite Series	. 55
		2.8.1 Logarithm Test	. 67
	2.9	Exercise Problems	. 81
3	Limi	its and Continuity	83
	3.1	Limit of a function	. 83
	3.2	Continuous functions	. 89
	3.3	Uniform Continuity	. 98
	3.4	Uniform continuity	. 99
	3.5	Discontinuities	. 102
	3.6	Some important results	. 103
	3.7	Exercise Problems	. 106
4	Diffe	erentiation	109
	4.1	Derivative of a function	. 109
	4.2	Rules of Differentiation	. 115
	4.3	Mean Value Theorems	. 117
	4.4	Taylor's Theorem	. 121
	4.5	Exercise Problems	. 123
5	The	Riemann Integral and Convergence of Sequence of functions	125
	5.1	Riemann integral	. 125
	5.2	Properties of the Riemann Integral	. 129
	5.3	Some results	. 132
	5.4	Conditions that a function is Riemann integrable	. 133

2

	5.5	Fundamental Theorem of Calculus	133
	5.6	L'Hôspital's Rule	136
	5.7	Riemann-Stieltjes Integral	137
		5.7.1 Properties of the Riemann-Stieltjes Integral	138
		5.7.2 Convergence Theorems	139
	5.8	Integration of Vector-Valued Functions	141
	5.9	Sequence of Functions	142
	5.10	Series of Functions	156
	5.11	Exercise Problems	162
	_		
6	Pow	er Series & Fourier Series 1	64
	6.1	Power Series	164
	6.2	Fourier Series	166
	6.3	Exercise Problems	183
7	Fun	ctions of Several Variables 1	86
	7.1	Functions from \mathbb{R} to \mathbb{R}^2	186
	7.2	Functions of Several Variables	192
	7.3	Partial derivatives	197
	7.4	Directional Derivatives	200
	7.5	Derivative as a linear transformation	202
	7.6	Inverse Function Theorem	222
	7.7	Implicit Function Theorem	227
	7.8	Exercise Problems	230

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER)

<u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

UNIT II: REAL ANALYSIS

SYLLABUS

Elementary set theory – Finite, countable and uncountable sets – Real number system as a complete ordered field – Archimedean Property – Supremum, infimum, Sequences and Series – Convergence – limit supremum – limit infimum – The Bolzano – Weierstrass theorem – The Heine – Borel Covering theorem – Continuity, Uniform Continuity, Differentiability – The Mean Value theorem for derivatives – Sequences and Series of functions – Uniform convergence. Riemann – Stieltjes integral: Definition and existence of the integral – properties of the integral – Integral and Differentiation – Integration of vector valued functions – Sequences and Series of functions: Uniform convergence – Continuity, Integration and Differentiation. Power series – Fourier series. Functions of several variables – Directional derivative – Partial derivative – derivative as a linear transformation – The Inverse function theorem and The Implicit function theorem

<u>REFERENCE BOOKS:</u>

- 1) Rudin, Walter. Principles of Mathematical Analysis. 3rd Edition, McGraw-Hill, 1976.
- 2) Royden, H. L., and P. M. Fitzpatrick. Real Analysis. 4th Edition, Pearson, 2010.
- Bartle, Robert G., and Donald R. Sherbert. Introduction to Real Analysis. 4th Edi tion, Wiley, 2011.
- Protter, Murray H., and Charles B. Morrey. A First Course in Real Analysis. 2nd Edition, Springer, 1991.
- Thomas, G. B., and R. L. Finney. Calculus and Analytic Geometry. 9th Edition, Addison-Wesley, 1996.

Chapter 1

Basics and Metric Spaces

1.1 Elementary set theory

Definition 1.1.1 (Relations). Let *A* and *B* be two non-empty sets, a relation from *A* to *B* is a subset of the Cartesian product $A \times B$. That is, any subset of $A \times B$ is said to be a relation from *A* to *B*, and we call any subset of $A \times A$ as a relation on *A*.

Let R be a relation $A \rightarrow B$.

- 1. If $R = \phi$, then it is called the empty relation.
- 2. If $R = A \times B$, it is the universal relation.
- 3. If A = B, and if $R = \{(a, a); \forall a \in A\}$, is called the identity relation.

Classification of Relations: Let A be a non-empty set, and R be a relation on A, then

- 1. *R* is said to be reflexive if $(a, a) \in R, \forall a \in A$
- 2. R is said to be symmetric if $(a,b) \in R \Rightarrow (b,a) \in R, \forall a, b \in A$
- **3**. *R* said to be transitive if (a, b) and $(b, c) \in R \Rightarrow (a, c) \in R$
- 4. *R* is said to be an equivalence relation on *A*, if *R* is said to be reflexive, symmetric & transitive

- 5. *R* is said to be antisymmetric, if both (a, b) and $(b, a) \in R$, iff a = b
- 6. *R* is said to be a partially ordered relation, if *R* is reflexive, antisymmetric & transitive

Definition 1.1.2 (Equivalence Class). Let R be an equivalence relation on a non-empty set A, then there exist a partition of A into disjoint classes, called equivalence classes.

Definition 1.1.3. For $a \in A$, the equivalence class of a is given by $[a] = \{b \in A; (a, b) \in R \text{ or } aRb\}.$

Properties:

- **1.** $a \in [a]$
- **2.** If $b \in [a]$, then [a] = [b]
- **3.** If $b \notin [a]$, then $[a] \cap [b] = \phi$

Result: Let *A* & *B* be two non-empty finite sets, with |A| = n, |B| = m, then

- 1. No.of relations from A to B is 2^{mn}
- 2. No.of relations on A is 2^{n^2}
- 3. No.of reflexive relations on A is 2^{n^2-n}
- 4. No.of symmetric relations on A is $2^{n(n+1)/2}$
- 5. No.of relations on A which are both reflexive & symmetric $2^{(n^2-n)/2}$
- 6. Number of equivalence relation on A (= Number of partition on A) is given by

$$B_n = \sum_{k=0}^{n-1} {}^{n-1}C_k B_k$$
, where $B_0 = 1$.

Definition 1.1.4 (Mapping). Consider two sets A and B whose elements may be any objects and suppose that with each element x of A, there is associated an element of B which we denote by f(x). Then f is said to be a *function* from A to B (or a *mapping* of A into B). The set A is called the *domain* of f (or we say f is defined on A), and the elements f(x) are called the *values* of f. The set of all values of f is called *range* of f.

Definition 1.1.5 (Image). Let *A* and *B* be two sets and let *f* be a mapping of *A* into *B*. If $E \subset A$, f(E) is defined to the set of all elements f(x), for $x \in E$. The set f(E) is called the *image* of *E* under *f*.

Remark 1.1.1. It is clear that $f(A) \subset B$; if f(A) = B, then the map f is said to be an onto function.

Definition 1.1.6 (Inverse image). If $E \subset B$, $f^{-1}(E)$ denotes the set of all $x \in A$ such that $f(x) \in E$. The set $f^{-1}(E)$ is the inverse image of E under f.

Definition 1.1.7 (One-one mapping). If for each $y \in B$, $f^{-1}(y)$ consist of atmost one element of A, then f is said to be one-one mapping of A into B. (or) If $x_1, x_2 \in A$, then the function is said to be one-one mapping if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$. (or) $f(x_1) = f(x_2)$ implies $x_1 \neq x_2$.

Definition 1.1.8 (One-one correspondence). If there exists a one-one mapping of *A* onto *B*, we say that *A* and *B* are in one-one correspondence (or) that *A* and *B* have the same cardinal number (or) that *A* and *B* are equivalent, and we write $A \sim B$.

This relation has the following properties:

1.
$$A \sim B$$
 (reflexive)

- 2. If $A \sim B$, then $B \sim A$ (symmetric)
- **3.** If $A \sim B$ and $B \sim C$, then $A \sim C$ (transitive) ⁽¹⁾ 9566

Any relation with these properties is called an equivalence relation.

Definition 1.1.9. Let *A* and Ω be the sets and suppose that E_{α} is the subset of Ω associated with *A*, that is, $\{E_{\alpha}\}$ where $\alpha \in A$.

The union of sets E_{α} is defined to be the set *S* such that $x \in S$ if and only if $x \in E_{\alpha}$ for atleast one $\alpha \in A$.

$$S = \bigcup_{\alpha \in A} E_{\alpha}$$

If A consists of integers $1, 2, \dots, n$, then the set

$$S = \bigcup_{m=1}^{n} E_m.$$

If A is the set of postive integers, then

$$S = \bigcup_{m=1}^{\infty} E_m.$$

Similarly, the intersection of sets E_{α} is defined to be the set T such that $x \in T$ if and only if $x \in E_{\alpha}$ for all $\alpha \in A$.

$$T = \cap_{\alpha \in A} E_{\alpha}$$

If A consists of integers $1, 2, \dots, n$, then the set

$$T = \bigcap_{m=1}^{n} E_m.$$

If A is the set of positive integers, then

$$T = \bigcap_{m=1}^{\infty} E_m.$$

Remark 1.1.2. If $A \cap B$ is not empty, we say that A and B intersect; otherwise they are disjoint.

Problem 1.1.1: Let $E_1 = \{1, 2, 3\}, E_2 = \{2, 3, 4\}$. Then $E_1 \cup E_2 = \{1, 2, 3, 4\}, E_1 \cap E_2 = \{2, 3\}$.

Problem 1.1.2: Let $A = \{x | x \in \mathbb{R} \ \& \ 0 < x \le 1\}$ and $E_x = \{y | y \in \mathbb{R} \ \& \ 0 < y < x\}$. Then $\bigcup_{x \in A} E_x = E_1$ and $\bigcap_{x \in A} E_x = \phi$.

Result 1.1.1. 1. $A \cup B = B \cup A$

- **2.** $A \cap B = B \cap A$
- **3.** $(A \cup B) \cup C = A \cup (B \cup C)$
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$
- **5.** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **6.** $A \subset A \cup B$
- 7. $A \cap B \subset A$
- 8. If $A \subset B$, then $A \cup B = B$, $A \cap B = A$

9. $A \cup \phi = A$

10. $A \cap \phi = \phi$

Result 1.1.2. Let $f : A \to B$ be a function where A and B be two non-empty finite sets with n(A)=n and n(B)=m then

- 1. Number of functions from A to $B = m^n$
- 2. Number of one-one function from A to B

$$= \begin{cases} {}^{m}P_{n}, & m \ge n \\ 0, & m < n \end{cases}$$

3. Number of onto function from A to B

$$= \begin{cases} \sum_{i=1}^{m} (-1)^{m-i} ({}^{m}C_{i}i^{n}), & m \le n \\ 0, & m > n \end{cases} = \begin{cases} \sum_{r=0}^{m-1} (-1)^{r} ({}^{m}C_{r})(m-r)^{n}, & m \le n \\ 0, & m > n \end{cases}$$

If $m = 2$, then Number of onto function $f : A \to B$ is $2^{n} - 2$.

- 4. Number of bijective function from *A* to *B* is $\begin{cases} n!, & m = n \\ 0, & m \neq n \end{cases}$
- 5. If m = n, then $f : A \to B$ is one-one $\implies f$ is onto.

Definition 1.1.10 (Compositions of functions). Let A, B, C be three non-empty sets, $f : A \to B$ and $g : B \to C$ be two functions, then we can define a function A to C, $gof = A \to C$ by $(gof)(x) = g(f(x)), \forall x \in A$.

If A = C, then both the compositions gof & fog are defined.

If A = B = C, then the compositions gof, fog, fof, gog etc are also defined.

Result 1.1.3. 1. $fog \neq gof$, in general.

2. If f & g are one-one, then gof and fog are also one-one, provided they exists.

- 3. If f & g are onto, then gof and fog are also onto, provided they exists.
- 4. If *gof* is one-one, then *f* is one-one.
- 5. If gof is onto, then g is onto.

Definition 1.1.11 (Inverse of Functions). Let A & B be two non-empty sets, and let f : $A \to B$ be a function, f is said to have a left inverse if there exist a function $g: B \to A$ such that $gof = I_A$. f is said to have a right inverse if there exist a function $g: B \to A$ such that $f \circ g = I_B$. f is said to be invertible if there exist a function $g : B \to A$ such that $gof: I_A$ and $fog = I_B$. If f is invertible, then we write $g = f^{-1}$.

1. A function $f : A \rightarrow B$ is invertible, if f is both one-one and onto. **Result 1.1.4**.

- 2. If $f : A \rightarrow B$ is one-one then it has a left inverse.
- 3. If $f : A \rightarrow B$ is onto then it has a right inverse.
- 4. Let A and B be two non-empty sets, if there exist a bijection between A and B then A and B are said to be numerically equivalent.
- 5. Two finite sets A and B are numerically equivalent iff n(A) = n(B).

Definition 1.1.12 (Even and Odd Functions). Let f be a real function, f is said to be an even function if $f(-x) = f(x), \forall x \in D(f)$ and f is said to be an odd function if $f(-x) = -f(x), \ \forall x \in D(f).$

Result 1.1.5. 1. f(x) = 0 is the only function which is both even and odd.

- 2. Non-zero constant functions are even functions.
- 3. Sum of two even functions is even.
- 4. Difference of two even functions is even.
- 5. Sum or difference of two odd functions is odd.
- 6. Sum of an even function with an odd function need not be even or odd.

- 7. Difference of an even function with an odd function need not be even or odd.
- 8. Product of two even functions is even.
- 9. Product of two odd functions is even.
- 10. Product of an even function with an odd function is odd.
- 11. Composition of two even functions is even.
- 12. Composition of two odd functions is odd.
- 13. gof is even if f is even.
- 14. Composition of two functions is even if atleast one of them is even.
- 15. Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function,then, f(x) + f(-x) is an even function and f(x) f(-x) is an odd function Also, $f(x) = \left(\frac{f(x) + f(-x)}{2}\right) + \left(\frac{f(x) - f(-x)}{2}\right)$,

i.e., any function can be expressed as the sum of an even and an odd function.

Definition 1.1.13 (Periodic Functions). Let *f* be a real function, *f* is said to be periodic, if f(x + T) = f(x), for some $T \in \mathbb{R}$, then, *T* is called the period of *f*.

- *Example* 1.1.1: 1. The trigonometric function $\sin x$, $\cos x$, $\csc x$, $\sec x$ are periodic with period $2k\pi$, $k \in \mathbb{Z}$ and fundamental period is 2π .
 - 2. The trigonometric function $\tan x$ and $\cot x$ are periodic with period $k\pi, k \in \mathbb{Z}$, their fundamental period is π .
 - 3. Fundamental period of the function $\sin^n x$, $\cos^n x$, $\sec^n x$, $\csc^n x$ is π if *n* is even and 2π if *n* is odd.
 - 4. Fundamental period of $\tan^n x$, $\cot^n x$ is π , $\forall n$.

Fundamental period of $\sin(ax)$, $a \neq 0$ is $\left(\frac{2\pi}{a}\right)$. In general let *f* be a periodic function with fundamental period *T*, then the fundamental period of the function f(ax) is $\frac{T}{a}$.

10

- 5. The function $\{x\} = x [x]$ is periodic with period $k, k \in \mathbb{Z}$ and fundamental period is 1.
- 6. Constant functions are periodic with period $a, a \in \mathbb{R}$, and does not have fundamental periods.

Result 1.1.6. Let f & g be two periodic functions with periods $T_1 \& T_2$ respectively, then f + g, f - g, fg are also periodic if there exist positive integers a & b such that $aT_1 = bT_2$. If f + g, f - g and fg are periodic, then period of these function $\leq LCM(T_1, T_2)$.

Note 1: Sum of two periodic functions need not be periodic.

Example 1.1.2: $\sin x$, $\sin 2x$ are periodic with fundamental periods 2π and 1 respectively. But their sum is not period, as there does not exist positive integers such that $a \cdot 2\pi = b \cdot 1$.

Definition 1.1.14 (Monotone Functions). *f* is said to be monotone if it is either monotonically increasing or monotonically decreasing.

- 1. If $x < y \Rightarrow f(x) \le f(y), \forall x, y \in D(f)$, then f is said to be monotonically increasing.
- 2. If $x < y \Rightarrow f(x) \ge f(y), \forall x, y \in D(f)$, then f is said to be monotonically decreasing.
- 3. If $x < y \Rightarrow f(x) < f(y), \forall x, y \in D(f)$, then f is said to be strictly monotonically increasing.
- 4. If $x < y \Rightarrow f(x) > f(y), \forall x, y \in D(f)$, then f is said to be strictly monotonically decreasing.
- **Result 1.1.7.** 1. Constant functions are both monotonically increasing and monotonically decreasing. They are usually considered as non-decreasing functions.
 - 2. $f(x) = x, e^x, \log_a x, x \in (0, \infty)$ are monotonically increasing functions.
 - 3. $f(x) = \frac{1}{x}$ is monotonically decreasing in the intervals $(-\infty, 0), (0, \infty)$.
 - 4. Lines with positive slope are monotonically increasing and the lines with negative slope are monotonically decreasing.

- 5. Let $f : A \to B$, $g : C \to B$ be two real functions, then the function f + g, f g, fg are defined only if $A \cap C \neq \phi$. If $A \cap C \neq \phi$, then the domains of f + g, f g, fg are $A \cap C$ itself.
 - The $D\left(\frac{f}{g}\right)$ is given by $A \cap C \setminus \{x \in C \mid g(x) = 0\}$

Definition 1.1.15 (Bounded Functions). Let *f* be a real function, *f* is said to be bounded, if there exist a positive number, such that $|f(x)| \le M$, $\forall x \in D(f)$.

Note 2 (Partial fractions): If a < b, $\frac{1}{(x-a)(x-b)} = \frac{1}{(b-a)} \left[\frac{1}{(x-a)} - \frac{1}{(x-b)} \right]$

1.2 Countable sets

Definition 1.2.1. For any positive integer n, let J_n be the set whose elements are the integers $1, 2, \dots, n$. Let J be the set consisting of all positive integers. For any set A, we define

- 1. *A* is finite, if $A \sim J_n$ for some *n*.
- 2. *A* is infinite, if *A* is not finite.
- 3. A is countable, if $A \sim J$.
- 4. *A* is uncountable, if *A* is neither finite nor countable.
- 5. *A* is atmost countable, if *A* is finite or countable.

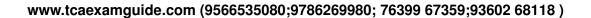
Note: Countable sets are also called enumerable or denumerable.

Problem 1.2.1 (Integers are countable): Let *A* be the set of all integers. Consider the following arrangement of the sets *A* and *J*.

 $A: 0, 1, -1, 2, -2, \cdots$ $J: 1, 2, 3, \cdots$.

Define the function $f: J \to A$ by

$$f(n) = \begin{cases} \frac{n}{2}, \text{ if } n \text{ is even} \\ -\frac{(n-1)}{2}, \text{ if } n \text{ is odd} \end{cases}$$



This function f is one-one and onto. Therefore, the set A is countable.

Remark 1.2.1. A finite set cannot be equivalent to one of its proper subsets; *A* is infinite if *A* is equivalent to one of its proper subsets.

Example 1.2.1: By previous remark, we have proved that $J \sim \mathbb{Z}$ but we know that J is a proper subset of \mathbb{Z} .

Remark 1.2.2. Let *X* be a countable infinite set. Then we write $|X| = \aleph_0$. (Read as "Aleph not"). If *X* is finite, say *n* number of distinct elements, then |X| = n.

Result 1.2.1. Every countable infinite set is equivalent to a proper subset of itself.

Proof. The proof is by axiom of choice. Let $X = \{x_1, x_2, \dots\}$ and $Y = \{x_2, x_3, \dots\} \subset X$. Define $f : X \to Y$ by $f(x_n) = x_{n+1}$.

Clearly, *f* is one-one and onto. Thus, we proved $X \sim Y$, even though *Y* is a proper subset of *X*.

Result 1.2.2. Every infinite set has a countable infinite subset. Consequently,

A is infinite set $\Rightarrow |A| \ge \aleph_0$.

Proof. Let *X* be an infinite set. Then either

1. X is countable infinite (or)

By previous result, it has a countable infinite subset.

2. *X* is uncountable infinite

By axoim of choice, we are able to choose $Y = \{x_1, x_2, \dots\} \subset X$, which is a countable infinite subset.

Result 1.2.3. Every infinite set is equivalent to one of its proper subsets.

Proof. Now we are in a situation to prove every infinite set is equivalent to one of its proper subset.

Case (i) If X is countable, then by result 1.2.1, there exists $Y \subset X$ such that $Y \sim X$.

Case (ii) Let *X* be an uncountable infinite set. Then there exists a countable infinite subset X_1 of *X*. Put $X_2 = X - X_1$. Then

$$X_1 \cap X_2 = \emptyset$$
 and $x_1 \cup X_2 = X$.

Here X_1 is a countable infinite set, and so $X_1 \sim X_3$ when $X_3 \subset X_1$. So we have mapped $X_1 \cap X_3$ and $X_2 \cap X_2$. Then, $X_3 \cup X_2 = Y$. We have

$$X \sim Y$$
 and $Y \subset X$.

Hence proved.

Remark 1.2.3. This is the characterization of an infinite set.

Example 1.2.2: Are there infinite set whose cardinality is greater than \aleph_0 ?

Let |X| = 3. Then $\mathscr{P}(X)$ is the collection of all subsets of X.

$$|\mathscr{P}(X)| = 2^3 = 8.$$

So clearly, $|\mathscr{P}(X)| > |X|$.

Remark 1.2.4. If X is infinite, then $|\mathscr{P}(X)| > |X|$.

Result 1.2.4. There is no onto map from *X* to $\mathscr{P}(X)$.

By using this result, we can say $|\mathscr{P}(\mathbb{N})| > |\mathbb{N}|$.

$$\implies |\mathscr{P}(\mathbb{N})| = 2^{|\mathbb{N}|} = 2^{\aleph_0}.$$
$$\implies 2^{\aleph_0} > \aleph_0.$$

Put $\mathfrak{c} = 2^{\aleph_0}$. (Continum)

Different characterization of 2^{\aleph_0} : Let *X* and *Y* be two finite sets such that |X| = m and |Y| = n. Put

 $\mathcal{F} = \{f : X \to Y\} =$ Collection of all functions from X to Y.

What is the cardinality of \mathcal{F} , i.e., $|\mathcal{F}| = ?$

For each $x \in X$, there are *n* choices. Thus, totally we have n^m choices. That is,

$$|\mathcal{F}| = n^m = |Y|^{|X|}.$$

Now, what is the cardinality of $\mathcal{F}_{\{0,1\}}$?

• $\mathcal{F}_{\{0,1\}}$ is the collection of all functions from \mathbb{N} to $\{0,1\}$. Then,

$$|\mathcal{F}_{\{0,1\}}| = 2^{|\mathbb{N}|} = 2^{\aleph_0} = \mathfrak{c}.$$

Result 1.2.5. Clearly, $\mathscr{P}(\mathbb{N}) \sim \mathcal{F}_{\{0,1\}}$.

• We know that every real number in [0, 1] have a binary representation. Let $f \in \mathcal{F}_{\{0,1\}}$. Then f can be viewed as a sequence. Therefore, every $x \in [0, 1]$ can be associated with some $f \in \mathcal{F}_{\{0,1\}}$ and hence

$$\mathcal{F}_{\{0,1\}} \sim [0,1].$$

So, $|[0,1]| = 2^{\aleph_0}$.

• We know that $[0,1] \sim \mathbb{R}$.

$$[0,1] \xrightarrow{\longrightarrow} \left[\frac{-\pi}{2}, \frac{\pi}{2} \right] \xrightarrow{f_2 = \tan^{-1} x} \mathbb{R}$$

Here f_1 is a linear map, both f_1 and f_2 are one-one and onto and thus their composition is also a one-one onto map. So, $[0, 1] \sim \mathbb{R}$. Thus,

$$|\mathbb{R}| = 2^{\aleph_0} = \mathfrak{c}.$$

Thus, we have obtained 3 different characterizations of 2^{\aleph_0} .

Result 1.2.6 (Hilbert Unproven Conjecture). There is no other infinities between \aleph_0 and $2^{\aleph_0} = \mathfrak{c}$. That is, if there is an infinity between \aleph_0 and 2^{\aleph_0} , it must be equal to either one of them.

$$\aleph_0 \leq z \leq 2^{\aleph_0} \implies z = \aleph_0 \text{ or } z = 2^{\aleph_0}.$$

Note: Even though it is unproven, we use this result and there are questions from this result.

We now pose a **question**. Are there infinities greater than 2^{\aleph_0} ? The answer is YES. Look at $\mathscr{P}(\mathbb{R})$ and use Result 1.2.4. That is,

we have no ONTO function from \mathbb{R} to $\mathscr{P}(\mathbb{R})$.

So $2^{\aleph_0} < 2^{2^{\aleph_0}}$, i.e., $\mathfrak{c} < 2^{\mathfrak{c}}$. Likewise

 $\mathfrak{c} < 2^{\mathfrak{c}} < 2^{2^{\mathfrak{c}}} < 2^{2^{\mathfrak{c}}} < \cdots$

Let $2^{\aleph_0} = \aleph_1, 2^{\aleph_1} = \aleph_2, \cdots$. Then we have

 $\aleph_0 < \aleph_1 < \aleph_2 < \cdots.$

1.3 Arithmetic of cardinalities

Let $X = \{a, 2, 3\}$ and $Y = \{1, b, c\}$. Then

 $X \cap Y = \emptyset$, |X| = 3, and |Y| = 3.

Here $|X \cup Y| = |\{a, b, c, 1, 2, 3\}| = 6$ and $|X \cap Y| = |\{\}| = 0$. Thus,

 $|X \cup Y| = |X| + |Y|$ and $|X \cap Y| = |X| - |Y|$.

We are able to see that there are some arithmetic in cardinalities. We will improve this to infinite sets.

Definition 1.3.1. If X and Y are disjoint, then $|X| + |Y| = |X \cup Y|$.

The next natural question is to associate $|X| \times |Y|$. Let us consider the next definition which will answer this question.

Definition 1.3.2. $|X| \times |Y| = |X \times Y|$.

Definition 1.3.3. $|X|^{|Y|} = |\mathcal{F}_{\{0,1\}}|$, where $|\mathcal{F}_{\{0,1\}}|$ is the collection of all functions from *Y* to *X*.

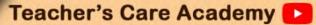
UNIT-III TOPOLOGY

Your Success is Our Goal...

SERVICES AVAILABLE FOR PG TRB EXAM

- Material for All 10 Units
- E-Book for Psychology & Education Methodology
- **E-Book for GK**
- **Online Recorded Video Classes**
- **Online Test**
- **Question Bank**
- Regular Classes

tcaexamguide 岁



www.tcaexamguide.com

tcaexamguide@gmail.com M

TOPOLOGY

PG TRB (2025-2026)

UNIT-III FIRST EDITION

TEACHER'S CARE PUBLICATION 38/23, Vaigundaperumal Koil Street,Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

P	PG TRB – MATHEMATICS – 2025-26 UNIT – III		
	TOPOLOGY		
S.No.	CONTENT	P. No.	
	Syllabus & Reference Book	1	
3.1	TOPOLOGICAL SPACES	2	
_	3.1.1 Topology Definition	2	
	3.1.2. Definition	3	
3.2	BASIS FOR A TOPOLOGY	3	
	3.2.1. Basis Definition	3	
	3.2.2. Lemma	5	
	3.2.3. Lemma	5	
	3.2.4. Lemma	6	
	3.2.5. Standard Topology Definition	6	
	3.2.7. K-Topology Definition	7	
	3.2.8. Lemma	7	
	3.2.9. Subbasis Definition	7	
3.3	THE ORDER TOPOLOGY	8	
	3.3.1. Order Topology Definition	8	
	3.3.2. Rays Definition	9	
3.4	THE PRODUCT TOPOLOGY ON X ×Y	10	
	3.4.1. PRODUCT TOPOLOGY DEFINITION	10	
	3.4.2. THEOREM	11	

		2
	3.4.3. PROJECTIONS DEFINITION	11
	3.4.4. THEOREM	12
3.5	THE SUBSPACE TOPOLOGY	12
	3.5.1. Subspace Topology Definition:	12
	3.5.2. Lemma	13
	3.5.3. Open Definition	13
	3.5.4. Lemma	13
	3.5.5. Theorem	13
	3.5.6. Theorem	14
3.6	CLOSED SETS	14
	3.6.1. Closed Definition	14
	3.6.2. Theorem	15
	3.6.3. Theorem	16
	3.6.4. Theorem	17
3.7	CLOSURE AND INTERIOR OF A SET	17
	Interior & Closure Of The Set Definition	17
	3.7.2. Theorem	17
	3.7.3. Theorem	18
	3.7.4. Definition	19
	3.7.5. Theorem	19
	3.7.6. Corollary	20
	3.7.7. Definition	20
	3.7.8. Theorem	20
	3.7.9. Theorem	21
	3.7.10. Theorem	21
	3.7.11. Theorem	22

	Previous Year Questions	22
	Exercise Problems	24
3.8	CONTINUOUS FUNCTIONS	26
	3.8.1. Continuous Definition	27
	3.8.2. Theorem	27
	3.8.3. Definition: Homeomorphisms	28
	3.8.4. Definition	28
	3.8.5. Topological Imbedding Definition	29
	3.8.6. Theorem (Rules For Constructing Continuous Functions).	30
	3.8.7. Theorem (The Pasting Lemma)	31
	3.8.9. Theorem (Maps into Products).	32
3.9	THE BOX PRODUCT TOPOLOGY	33
	3.9.1. Definition	34
	3.9.2. Definition	34
	3.9.3. Cartesian Product Definition	34
	3.9.4. Box Topology Definition	35
	3.9.5. Projection Mapping Definition	36
	3.9.6. Product Topology Definition:	36
	3.9.7. Theorem (Comparison Of The Box And Product Topologies)	36
	3.9.8. Theorem	37
	3.9.9. Theorem	37
	3.9.10. Theorem	37
	3.9.11. Theorem	37
	3.9.12. Theorem	38

3.10	IDENTIFYING SENTENCE PATTERNS	39
	3.10.1. Metric Definition	134
	3.10.2. ϵ -Ball Definition	39
	3.10.3. Metric Topology Definition	39
	3.10.4. Definition	40
	3.10.6. Bounded Definition	41
	3.10.6. Diameter Definition	41
	3.10.8. Theorem	41
	3.10.9. Euclidean Metric Definition	42
	3.10.10. Lemma	43
	3.10.11. Theorem	43
	3.10.12. Uniform Metric Definition	44
	3.10.13. Theorem	45
	3.10.14. Theorem	45
	3.10.15. The Metric Topology (Continued)	47
	3.10.16. Theorem	48
	3.10.17. Lemma (The Sequence Lemma)	48
	3.10.18. Theorem	49
	3.10.19. Lemma	50
	3.10.20. Theorem	50
	3.10.21. Converges Uniformly Definition	50
	3.10.22. Theorem (Uniform Limit Theorem)	51
	Previous Year Questions	53
	Exercise Problems	54

3.11	CONNECTEDNESS AND COMPACTNESS	56
	3.11.1. Intermediate value Theorem	56
	3.11.2. Maximum value Theorem	56
	3.11.3. Uniform continuity Theorem	57
3.12	CONNECTED SPACES	58
	3.12.1. Separation Definition	58
	3.12.2. Connected Definition	58
	3.12.3. Lemma	58
	3.12.4. Lemma	59
	3.12.5. Theorem	60
	3.12.6. Theorem	60
	3.12.7. Theorem	60
	3.12.8. Theorem	61
3.13	IDENTIFYING AND CORRECTING ERRORS	62
	3.13.1. Definition	63
	3.13.2. Theorem	63
	3.13.3. Corollary	64
	3.13.4. Theorem (Intermediate Value Theorem)	65
	3.13.5. Path Connected Definition	66
3.14	COMPONENTS AND LOCAL CONNECTEDNESS	69
	3.14.1. Components Definition	69
	3.14.2. Theorem	69
	3.14.3. Path Components Definition	70
	3.14.4. Theorem	71

	3.16.6. Lemma: (The Lebesgue Number Lemma)	85
	3.16.5. Distance Definition	85
	3.16.4. Theorem (Extreme Value Theorem)	84
	3.16.3. Theorem	83
	3.16.2. Corollary	83
	3.16.1. Theorem	81
3.16	COMPACT SUBSPACES OF THE REAL LINE	81
	3.15.12. Theorem	80
	3.15.11. Finite Intersection Property Definition	80
	3.15.10. Lemma (The Tube Lemma)	79
	3.15.9. Theorem	77
	3.15.8. Theorem	77
	3.15.7. Theorem	77
	3.15.6 Lemma	76
	3.15.5. Theorem	75
	3.15.4. Theorem	75
	3.15.3. Lemma	74
	3.15.2. Compact Definition	73
	3.15.1. Open Covering Definition	73
3.15	COMPACT SPACES	73
	3.14.8. Theorem	72
	3.14.7. Theorem	72
	3.14.6. Theorem	72
	3.14.5. Locally Connected Definition	71

	3.16.7. Uniformly Continuous Definition	86
	3.16.8. Theorem: (Uniform Continuity Theorem	87
	3.16.9. Isolated Point Definition	87
	3.16.10. Theorem	87
	3.16.11. Corollary	88
3.17	LIMIT POINT COMPACTNESS	88
	3.17.1. Definition	88
	3.17.2. Theorem	88
	3.17.3. Subsequence Definition	89
	3.17.4. Theorem	89
3.18	LOCAL COMPACTNESS	92
	3.18.1. Locally Compact Definition	92
	3.18.2. Theorem	93
	3.18.3. Compactification Definition	95
	3.18.4. Theorem	96
	3.18.5. Corollary	96
	3.18.6. Corollary	96
	Previous Year Questions	97
	Exercise Problems	100
3.19	THE COUNTABILITY AXIOMS	102
	3.19.1. Definition	102
	3.19.2. Theorem	102
	3.19.3. Second-Countable Definition	103
	3.19.4. Theorem	104
	3.19.5. Dense Definition	104

		8
	3.19.6. Theorem	104
	3.19.7. Lindeléf Space Definition	105
3.20	THE SEPARATION AXIOMS	108
	3.20.1. Regular Definition	108
	3.20.2. Lemma	109
	3.20.3. Theorem	109
3.21	NORMAL SPACES	113
	3.21.1. Theorem	113
	3.21.2. Theorem	114
	3.21.3. Theorem	115
	3.21.4. Theorem	115
3.22	THE URYSOHN LEMMA	118
	3.22.1. Theorem. (Urysohn Lemma)	118
	3.22.2. Definition	122
	3.22.3. Definition	123
	3.22.4. Theorem	124
3.23	THE URYSOHN METRIZATION THEOREM	125
	3.23.1. Theorem (Urysohn Metrization Theorem).	125
	3.23.2. Theorem (Imbedding Theorem)	128
	3.23.3. Theorem	129
	3.23.4. The Tietze Extension Theorem	129
	3.23.5. Theorem (Tietze Extension Theorem)	129
	Exercise Problems	134
3.24	IMPORTANT MCQ	139

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER) <u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

UNIT III - TOPOLOGY

SYLLABUS:

Topological spaces – Basis – The order Topology – The product Topology – The subspace Topology – Closed sets and limit points. Continuous functions – The box and product Topologies – The matrix Topology. Connected spaces – Connected subspaces of the real line – Components and local connectedness – compact spaces – Compact subspaces of the real line – Limit point compactness – Local compactness. Countability and separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn metrization theorem – The Tietze extension theorem.

<u>REFERENCE BOOKS:</u>

- 1) James R. Munkres, Topology, 2nd Edition, Prentice Hall of India Ltd, New Delhi 2005.
- 2) J Dugundji, Topology, Prentice Hall of India New Delhi 1975
- G.F. Simmons Introduction to Topology and Modern Analysis, Mc Graw Hill Book & Co, New York 1963
- 4) S.T. Hu, Elements of General Topology, Holden Day, Inc. New York, 1965
- 5) M.A Armstrong Basic Topology, Springer 1983

3.1. TOPOLOGICAL SPACES

3.1.1 TOPOLOGY DEFINITION

- A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:
 - 1) \emptyset and X are in \mathcal{T} .
 - 2) The union of the elements of any sub collection of \mathcal{T} is in \mathcal{T} .
 - 3) The intersection of the elements of any finite sub collection of \mathcal{T} is in \mathcal{T} . 95665 35080
- A set X for which a topology \mathcal{T} has been specified is called a topological space.

Note:

- 1) A topological space is an ordered pair (X, T) consisting of a set X and a topology T on X.
- If X is a topological space with topology *T*, we say that a subset U of X is an open set of X if U belongs to the collection *T*.
- 3) Using this terminology, we can say that a topological space is a set X together with a collection of subsets of X, called open sets, such that Ø and X are both open, and such that arbitrary unions and finite intersections of open sets are open.

Example 1.

- Let X be a three-element set, $X = \{a, b, c\}$. There are many possible topologies on X.
- From this example, you can see that even a three-element set has many different topologies.
 But not every collection of subsets of X is a topology on X.

Example 2.

• If X is any set, the collection of all subsets of X is a topology on X; it is called the discrete topology. The collection consisting of X and Ø only is also a topology on X; we shall call it the indiscrete topology, or the trivial topology.

Example 3.

- Let X be a set; let T_f be the collection of all subsets U of X such that X –U either is finite or is all of X. Then T_f is a topology on X, called the infinite complement topology. Both X and Ø are in T_f, since X X is finite and X Ø is all of X.
- If {U_α} is an indexed family of nonempty elements of T_f, to show that ∪ U_α is in T_f, we compute

$$X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha})$$

- The latter set is finite because each set X U_{α} is finite. If $U_{1},...,U_{n}$ are nonempty elements of \mathcal{T}_{f} , to show that $\cap U_{i}$ is in \mathcal{T}_{f} , we compute.
- The latter set is a finite union of finite sets and, therefore, finite.

Example. 4

• Let X be a set; let \mathcal{T}_c be the collection of all subsets U of X such that X - U either is countable or is all of X. Then \mathcal{T}_c is a topology on X.

3.1.2. DEFINITION

Suppose that *T* and *T*' a are two topologies on a given set X. If *T* ⊃ *T*', we say that *T*' is finer than *T*; if *T*' properly contains *T*, we say that *T*' is strictly finer than *T*. We also say that *T* is coarser than *T*', or strictly coarser, in these two respective situations. We say *T* is comparable with *T*' if either *T*' ⊃ *T* or *T* ⊃ *T*'.

Note:

If T ⊃ T', then we say that T' is larger than T, and T is smaller than T'. This is certainly acceptable terminology, the words "finer" and "coarser."

3.2. BASIS FOR A TOPOLOGY

3.2.1. BASIS DEFINITION:

- If X is a set, a basis for a topology on X is a collection \mathfrak{B} of subsets of X (called basis elements) such that
 - 1) For each $x \in X$, there is at least one basis element \mathfrak{B} containing x.
 - 2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.
- If 𝔅 satisfies these two conditions, then we define the topology 𝔅 generated by 𝔅 as follows: A subset U of X is said to be open in X (that is, to be an element of 𝔅) if for each x ∈ U, there is a basis element B∈𝔅 such that x ∈ B and B ⊂ U. Note that each basis element is itself an element of 𝔅.

Example 1.

• Let \mathfrak{B} be the collection of all circular regions (interiors of circles) in the plane. Then \mathfrak{B} satisfies both the conditions for a basis. In the topology generated by \mathfrak{B} , a subset U of the plane is open if every *x* in U lies in some circular region contained in U.

Example 2.

Let B' be the collection of all rectangular regions (interiors of rectangles) in the plane, where the rectangles have sides parallel to the coordinate axes. Then B' satisfies both conditions for a basis. The second condition is trivial, because the intersection of any two basis elements is itself a basis element (or empty). As we shall see later, the basis B' generates the same topology on the plane as the basis B given in the preceding example.

Example 3.

• If X is any set, the collection of all one-point subsets of X is a basis for the discrete topology on X.

Result:

Let us check now that the collection *T* generated by the basis 𝔅 is, in fact, a topology on X. If U is the empty set, it satisfies the defining condition of openness vacuously. Likewise, X is in *T*, since for each x ∈ X there is some basis element B containing x and contained in X. Now let us take an indexed family {U_α}_{α∈I}, of elements of *T* and show that

$$U = \bigcup_{\alpha \in J} U_{\alpha}$$

belongs to \mathcal{T} . Given $x \in U$, there is an index α such that $x \in U_{\alpha}$. Since U_{α} is open, there is a basis element B such that $x \in B \subset U_{\alpha}$. Then $x \in B$ and $B \subset U$, so that U is open, by definition.

- 2) Now let us take two elements U₁ and U₂ of *T* and show that U₁∩U₂ belongs to *T*.
 Given x ∈ U₁∩U₂, choose a basis element B₁ containing x such that B₁ ⊂ U₁; choose also a basis element B₂ containing x such that B₂ ⊂ U₂.
- 3) The second condition for a basis enables us to choose a basis element B_3 containing *x* such that $B_3 \subset B_1 \cap B_2$. Then $x \in B_3$ and $B_3 \subset U_1 \cap U_2$, so $U_1 \cap U_2$ belongs to \mathcal{T} , by definition.
- 4) Finally, we show by induction that any finite intersection U₁∩....∩U_n of elements of *T* is in *T*. This fact is trivial for n = 1; we suppose it true for n 1 and prove it for n. Now

$$(U_1 \cap \ldots \cap U_n) = (U_1 \cap \ldots \cap U_{n-1}) \cap U_n$$

By hypothesis, U₁∩.....∩U_{n-1} belongs to *T*; by the result just proved, the inter- section of U₁∩.....∩U_{n-1} and U_n also belongs to *T*.

Thus we have checked that collection of open sets generated by a basis \mathfrak{B} is a topology.

3.2.2. LEMMA

• Let X be a set; Jet \mathfrak{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathfrak{B} .

Proof:

- Given a collection of elements of 𝔅, they are also elements of 𝒯. Because 𝒯 is a topology, their union is in 𝒯. Conversely, given U ∈ 𝒯, choose for each x∈ U an element B_x of 𝔅 such that x∈B_x⊂ U. Then U = U_{x∈U}B_x, so U equals a union of elements of 𝔅.
- This lemma states that every open set V in X can be expressed as a union of basic elements.

3.2.3. LEMMA

Let X be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that x∈ C ⊂ U. Then C is a basis for the topology of X.

Proof:

- We must show that C is a basis. The first condition for a basis is easy: Given x∈ X, since X is itself an open set, there is by hypothesis an element C of C such that x∈ C ⊂ X. To check the second condition, let x belong to C₁∩ C₂, where C₁ and C₂ are elements of C. Since C₁ and C₂ are open, so is C₁∩ C₂. Therefore, there exists by hypothesis an element C₃ in C such that x∈ C₃⊂ C₁∩ C₂.
- Let T be the collection of open sets of X; we must show that the topology T' generated by C equals the topology T. First, note that if U belongs to T and if x∈U, then there is by hypothesis an element C of C such that x ∈ C ⊂ U. It follows that U belongs to the topology T', by definition. Conversely, if W belongs to the topology T', then W equals a union of elements of C, by the preceding lemma. Since each element of C belongs to T and T is a topology, W also belongs to T.

3.2.4. LEMMA

- Let \mathfrak{B} and \mathfrak{B}' be bases for the topologies \mathcal{T} and \mathcal{T}' respectively, on X. Then the following are equivalent:
 - 1) \mathcal{T}' is finer than \mathcal{T} .
 - For each x ∈ X and each basis element B ∈ 𝔅 containing x, there is a basis element
 B' ∈ 𝔅 ' such that x ∈ B' ⊂ B.

Proof:

- (2)⇒(1). Given an element U of T, we wish to show that U ∈ T'. Let x ∈ U. Since B generates T, there is an element B ∈ B' such that x ∈ B⊂ U. Condition (2) tells us there exists an element B'∈ B' such that x ∈ B'⊂ B. Then x ∈ B'⊂ U, so U ∈ T, by definition.
- (1)⇒(2). We are given x ∈ X and B ∈ 𝔅, with x ∈ B. Now B belongs to T by definition and T ⊂ T ' by condition (1); therefore, B ∈ T'. Since T' is generated by 𝔅', there is an element B' ∈ 𝔅' such that x ∈ B' ⊂ B.

Example 4.

• The collection \mathfrak{B} of all circular regions in the plane generates the same topology as the collection \mathfrak{B} ' of all rectangular regions.

3.2.5. STANDARD TOPOLOGY DEFINITION:

If 𝔅 is the collection of all open intervals in the real line, (a, b) = {x / a < x < b}, the topology generated by 𝔅 is called the standard topology on the real line. Whenever we consider ℝ, we shall suppose it is given this topology unless we specifically state otherwise.

3.2.6. LOWER LIMIT TOPOLOGY DEFINITION:

- If ℬ' is the collection of all half-open intervals of the form [a, b) = {x / a ≤ x < b}, where a < b, the topology generated by ℬ' is called the lower limit topology on ℝ When ℝ is given the lower limit topology, we denote it by ℝ₁.
- Finally let K denote the set of all numbers of the form 1/n, for $n \in \mathbb{Z}_+$, and

3.2.7. K-TOPOLOGY DEFINITION:

- Let B" be the collection of all open intervals (a, b), along with all sets of the form (a, b) K. The topology generated by B" will be called the K-topology on R. When R is given this topology, we denote it by R_k.
- It is easy to see that all three of these collections are bases; in each case, the intersection of two basis elements is either another basis element or is empty. The relation between these topologies is the following:

3.2.8. LEMMA

• The topologies \mathbb{R}_1 and \mathbb{R}_k are strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof:

- Let T, T' and T" be the topologies of ℝ, ℝ_l and ℝ_k, respectively. Given a basis element
 (a, b) for T and a point x of (a,b), the basis element [x, b) for T' contains x and lies in (a, b). On the other hand, given the basis element [x, d) for T', there is no open interval
 (a, b) that contains x and lies in [x, d). Thus T' is strictly finer than T.
- A similar argument applies to ℝ_k. Given a basis element (a, b) for T and a point x of (a, b), this same interval is a basis element for T" that contains x. On the other hand, given the basis element B = (-1, 1) K for T" and the point 0 of B, there is no open interval that contains 0 and lies in B.
- We leave it to you to show that the topologies of \mathbb{R}_l and \mathbb{R}_k are not comparable.

3.2.9. SUBBASIS DEFINITION

A subbasis S for a topology on X is a collection of subsets of X whose union equals X.
 The topology generated by the subbasis S is defined to be the collection T of all unions of finite intersections of elements of S.

Result:

 We must of course check that T is a topology. For this purpose it will suffice to show that the collection 𝔅 of all finite intersections of elements of S is a basis, for then the collection T of all unions of elements of 𝔅 is a topology, by Lemma 3.2.2. Given x ∈ X, it belongs to an element of S and hence to an element of 𝔅; this is the first condition for a basis.

2) To check the second condition, let

 $B_1 = S_1 \cap \dots \cap S_m$ and $B_2 = S'_1 \cap \dots \cap S'_n$ be two elements of \mathfrak{B} . Their intersection and $B_1 \cap B_2 = (S_1 \cap \dots \cap S_m) \cap (S'_1 \cap \dots \cap S'_n)$ is also a finite intersection of elements of S, so it belongs to \mathfrak{B} .

3.3. THE ORDER TOPOLOGY

3.3.1. ORDER TOPOLOGY DEFINITION:

• If X is a simply ordered set, there is a standard topology for X, defined using the order relation. It is called the order topology. We consider it and study some of its properties.

Result:

Suppose that X is a set having a simple order relation <. Given elements a and b of X such that a < b, there are four subsets of X that are called the **intervals** deter- mined by a and b. They are the following:

 $(a, b) = \{x / a < x < b\},\$ $(a, b] = \{x / a < x \le b\},\$ $[a,b] = \{x / a \le x < b\},\$ $[a,b] = (x / a \le x \le b\}.$

The notation used here is familiar to you already in the case where X is the real line, but these are intervals in an arbitrary ordered set.

- 2) A set of the first type is called an **open interval** in X, a set of the last type is called a **closed interval** in X, and sets of the second and third types are called **half-open intervals**. The use of the term "open" in this connection suggests that open intervals in X should turn out to be open sets when we put a topology on X.
- Let X be a set with a simple order relation; assume X has more than one element. Let \mathfrak{B} be the collection of all sets of the following types:
 - 1) All open intervals (a, b) in X.
 - 2) All intervals of the form $[a_0, b)$, where a_0 is the smallest element (if any) of X.
 - 3) All intervals of the form $(a, b_0]$, where b_0 is the largest element (if any) of X.
- The collection \mathfrak{B} is a basis for a topology on X, which is called the **order topology.**

Note:

• If X has no smallest element, there are no sets of type (2), and if X has no largest element, there are no sets of type (3).

Example 1.

The standard topology on ℝ, as defined in the preceding section, is just the order topology derived from the usual order on ℝ.

Example 2.

- Consider the set ℝ × ℝ, in the dictionary order; we shall denote the general element of ℝ × ℝ by x × y, to avoid difficulty with notation. The set ℝ × ℝ has neither a largest nor a smallest element, so the order topology on ℝ × ℝ has as basis the collection of all open intervals of the form (a × b, c × d) for a < c, and for a = c and b < d.

Example 3.

The positive integers Z₊ form an ordered set with a smallest element. The order topology on Z₊ is the discrete topology, for every one-point set is open: If n > 1, then the one-point set {n} = (n - 1, n + 1) is a basis element; and if n = 1, the one-point set {1} = [1, 2) is a basis element.

Example 4.

The set X = {1, 2} × Z₊ in the dictionary order is another example of an ordered set with a smallest element. Denoting 1 × n by a_n and 2 × n by b_n, we can represent X by

The order topology on X is not the discrete topology. Most one-point sets are open, but there is an exception-the one-point set {b₁}. Any open set containing b₁ must contain a basis element about b₁ (by definition), and any basis element containing b₁ contains points of the a_i sequence.

3.3.2. RAYS DEFINITION

• If X is an ordered set, and a is an element of X, there are four subsets of X that are called the rays determined by a. They are the following:

$$(a, +\infty) = \{ x / x > a \},\$$

$$(-\infty, a) = \{ x / x < a \},$$

 $[a, +\infty) = \{ x / x \ge a \},$
 $(-\infty, a] = \{ x / x \le a \}.$

• Sets of the first two types are called **open rays**, and sets of the last two types are called **closed rays**.

Result:

- The use of the term "open" suggests that open rays in X are open sets in the order topology. And so they are. Consider, for example, the ray (a,+∞). If X has a largest element b₀, then (a, +∞) equals the basis element (a, b₀]. If X has no largest element, then (a, +∞) equals the union of all basis elements of the form (a, x), for x > a. In either case, (a, +∞) is open. A similar argument applies to the ray (-∞, a).
- 2) The open rays, in fact, form a subbasis for the order topology on X, as we now show. Because the open rays are open in the order topology, the topology they generate is contained in the order topology. On the other hand, every basis element for the order topology equals a finite intersection of open rays; the interval (a, b) equals the intersection of (-∞, b) and (a, +∞), while [a₀, b) and (a, b₀], if they exist, are themselves open rays.
- 3) Hence the topology generated by the open rays contains the order topology.

3.4. THE PRODUCT TOPOLOGY ON X × Y

• If X and Y are topological spaces, there is a standard way of defining a topology on the Cartesian product X × Y. We consider this topology now and study some of its properties.

3.4.1. PRODUCT TOPOLOGY DEFINITION:

- Let X and Y be topological spaces. The **product topology** on X×Y is the topology having as basis the collection 𝔅 of all sets of the form U×V, where U is an open subset of X and V is an open subset of Y.
- Let us check that ℬ is a basis. The first condition is trivial, since X × Y is itself a basis element. The second condition is almost as easy, since the intersection of any two basis elements U₁× V₁ and U₂×V₂ is another basis element. For and the latter set is a basis element because U₁ ∩ U₂ and V₁∩ V₂ are open in X and Y, respectively.

 $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2),$

 Note that the collection B is not a topology on X ×Y. The union of the two rectangles is not a product of two sets, so it cannot belong to B; however, it is open in X × Y.

3.4.2. THEOREM

If 𝔅 is a basis for the topology of X and C is a basis for the topology of Y, then the collection D = (B×C / B ∈ 𝔅 and C ∈ C } is a basis for the topology of X × Y.

Proof:

- We apply Lemma 3.2.3. Given an open set W of X × Y and a point x × y of W, by definition of the product topology there is a basis element U × V such that x × y ∈ U × V ⊂ W.
- Because ℬ and e are bases for X and Y, respectively, we can choose an element B of ℬ such that x ∈ B ⊂ U, and an element C of C such that y ∈ C ⊂ V. Then x × y ∈ B× C ⊂ W. Thus the collection D meets the criterion of Lemma 3.2.3, so D is a basis for X × Y.

Example 1.

- We have a standard topology on ℝ the order topology. The product of this topology with itself is called the standard topology on ℝ × ℝ = ℝ². It has as basis the collection of all products of open sets of ℝ, but the theorem just proved tells us that the much smaller collection of all products (a, b) × (c, d) of open intervals in ℝ will also serve as a basis for the topology of ℝ². Each such set can be pictured as the interior of a rectangle in ℝ². Thus the standard topology on ℝ² is just the one we considered in Example 2 of section 3.2.
- It is sometimes useful to express the product topology in terms of a subbasis. To do this, we first define certain functions called projections.

3.4.3. PROJECTIONS DEFINITION

• Let $\pi_1 : X \times Y \to X$ be defined by the equation

 $\pi_1(\mathbf{x},\mathbf{y})=\mathbf{x};$

• let $\pi_2 : X \times Y \to Y$ be defined by the equation

$$\pi_2(\mathbf{x},\mathbf{y})=\mathbf{y}.$$

The maps π₁ and π₂ are called the **projections** of X × Y onto its first and second factors, respectively.

Result:

- We use the word "onto" because π₁ and π₂ are surjective (unless one of the spaces X or Y happens to be empty, in which case X×Y is empty and our whole discussion is empty as well!).
- If U is an open subset of X, then the set π₁⁻¹ (U) is precisely the set U×Y, which is open in X × Y.
- 3) Similarly, if V is open in Y, then π_2^{-1} (V) =X × V, which is also open in X × Y. The intersection of these two sets is the set U×V.

<u>3.4.4. THEOREM</u>

• The collection S = { π_1^{-1} (U) / U open in X} U { π_2^{-1} (V) /V open in Y} is a subbasis for the product topology on X × Y.

Proof:

Let T denote the product topology on X×Y; let T' be the topology generated by S. Because every element of S belongs to T, so do arbitrary unions of finite intersections of elements of S. Thus T '⊂ T. On the other hand, every basis element U×V for the topology T is a finite intersection of elements of S, since

$$U \times V = \pi_1^{-1}(U) \cap \pi_2^{-1}(V).$$

• Therefore, $U \times V$ belongs to \mathcal{T}' , so that $\mathcal{T} \subset \mathcal{T}'$ as well.

3.5.THE SUBSPACE TOPOLOGY

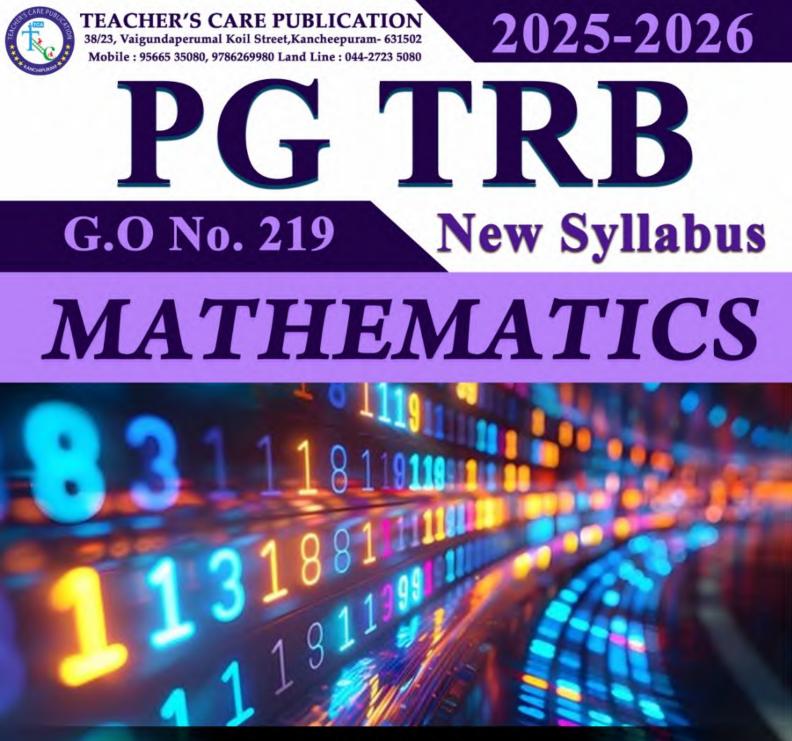
3.5.1. SUBSPACE TOPOLOGY DEFINITION:

 Let X be a topological space with topology *T*. If Y is a subset of X, the collection *T_y* = {Y ∩ U / U ∈ *T*} is a topology on Y, called the subspace topology. With this topology, Y is called a subspace of X; its open sets consist of all intersections of open sets of X with Y.

RESULT:

- 1) It is easy to see that \mathcal{T}_y is a topology. It contains \emptyset and Y because $\emptyset = Y \cap \emptyset$ and $Y = Y \cap X$, where \emptyset and X are elements of \mathcal{T} .
- 2) The fact that it is closed under finite intersections and arbitrary unions follows from the equations $(U_1 \cap Y) \cap (U_2 \cap Y) \dots \dots (U_n \cap Y) = (U_1 \cap U_2 \dots \dots \cap U_n) \cap Y$

 $\bigcup_{\alpha \in J} (U_{\alpha} \cap Y) = (\bigcup_{\alpha \in J} U_{\alpha}) \cap Y$



UNIT-VIII **CLASSICAL MECHANICS & NUMERICAL ANALYSIS**

Your Success is Our Goal ...

SERVICES AVAILABLE FOR PG TRB EXAM

- Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- **Online Recorded Video Classes**
- 🔶 Online Test
- Question Bank
- Regular Classes

tcaexamguide 🍃

Teacher's Care Academy 🔼

www.tcaexamguide.com

tcaexamguide@gmail.com M

CLASSICAL MECHANICS AND NUMERICAL ANALYSIS

PG TRB (2025-2026)

UNIT-8 FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

S.No	CONTENT	PAGE.No
	8.1. CLASSICAL MECHANICS	
8.1.1.	SOME BASIC CONCEEPT IN MECHANICS	1
	Space, Time, Mass, Force, Mechanics and Classification	1
	Dynamics, Classical Dynamics	2
	The mechanical system	2
	Equation of Motion	2
	Example	3
	Classification of Dynamical System	5
	D'Alembert Principle	8
	Summarized Principle of Virtual Work	9
	Lagrange's Form of D'alembert's Principal	9
	Energy and Momentum	9
	Work and Kinetic Energy	10
	Conservation of energy.	11
	Equilibrium And Stability	11
	Kinetic Energy of a System	12
	The Generalized Momentum	12
	Example	12
	Exercise	13
8.1.2.	LAGRANGE'S EQUATIONS	15
	Lagrange's equation of d' Alembert principle	15
	Lagrange's Equations	17
	Examples	18
	Important result	21
	Exercise	23

8.1.3.	HAMILTON'S CANONICAL EQUATION	25
	Examples	25
	Exercise	31
8.1.4.	HAMILTON'S PRINCIPLE	34
	Examples	34
	Exercise	35
8.1.5.	PRINCIPLE OF LEAST ACTION	38
	Exercise	39
8.1.6.	CANONICAL TRANSFORMATION	41
	Lagranges transformations	41
	Generating function	41
	Remark	41
	Examples	42
	Exercise	43
8.1.7.	POISSON BRACKE	45
	Remark	45
	Properties	45
	Exercise	46
8.1.8.	LAGRANGIAN BRACKET	48
	Properties	48
	Exercise	48
8.1.9.	Classical Mechanics Multiple Choose Questions	50

	8.2. NUMERICAL ANALYSIS		
	Introduction	85	
	Definition	85	
8.2.1.	NUMERICAL SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS	87	
	Transcendental Equations	87	
8.2.2.	METHOD OF ITERATION	88	
	Examples	88	
	Bisection Method	90	
	Examples	91	
	Secant Method	92	
	Exercise	93	
8.2.3.	NEWTON – RAPHSON METHOD	95	
	Examples	95	
8.2.4.	RATE OF CONVERGENCE	96	
	Examples	97	
	Exercise	100	
8.2.5.	SOLUTION OF SYSTEM OF LINEAR ALGEBRAIC EQUATIONS	102	
	Gauss Elimination Method	102	
	Partical Pivoting	103	
	Complete Pivoting	104	
	Examples	105	
	Exercise	108	
8.2.6.	GAUSS – SEIDAL METHOD	110	

	First Iterative	110
	First heralive	110
	Examples	111
	Exercise	113
8.2.7.	FINITE DIFFERENCES	114
	The Shift Operator	114
	The Forward Difference Operator	114
	The Backward Difference Operator	115
	The Central Difference Operator	115
	The Average Operator	116
	Important Relations On Operators	116
	Important Properties On Operators	116
	Important Results On Finite Differences	117
	Examples	117
	Exercise	123
	DIVIDED DIFFERENCES	125
	Examples	126
8.2.8.	INTERPOLATION AND NUMERICAL DIFFERENTIATION	127
	Gregory – Newton Forward Difference Interpolation Formula	127
	Differentiation	127
	Gregory – Newton Backward Difference Formula	128
	Differentiation	128
	Stirling's Formula	129
	Differentiation	129
	Examples	129

8.2.9.	LAGRANGE'S INTERPOLATION FORMULA	133
	Differentiations	133
	Examples	133
8.2.10.	NEWTON'S DIVIDED DIFFERENCE INTERPOLATION FORMULA	133
	Differentiations	133
	Examples	134
8.2.11.	HERMITE'S INTERPOLATION FORMULA	135
	Differentiations	135
	Examples	136
8.2.12.	SPLINE INTERPOLATION	137
	Differentiations	137
	Examples	137
8.2.13.	NUMERICAL INTEGRATION	139
	Trapezoidal Rule	139
	Exercise	140
	SIMPSON'S ONE-THIRD RULE	142
	SIMPSON'S THREE-EIGHT RULE	142
	Exercise	143
	WEDDLE'S RULE	145
	Examples	145
	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATION	146
8.2.14.	PICARD'S METHOD	146
	Examples	146
	Exercise	148

8.2.15	EULER'S METHOD	148
	Examples	148
8.2.16.	MODIFIED EULER'S METHOD	149
	Examples	149
	Exercise	150
8.2.17.	RUNGE-KUTTA METHOD	151
	First Order R-K Method	151
	Second Order R-K Method	151
	Third OrderR-K Method	151
	Fourth OrderR-K Method	151
	Examples	151
	Exercise	152
	MULTIPLE CHOICE QUESTIONS	154

UNIT – VIII CLASSICAL MECHANICS & NUMERICAL ANALYSIS

SYLLABUS

Unit VIII CLASSICAL MECHANICS AND NUMERICAL ANALYSIS

Classical Mechanics

Generalised Co-ordinates – Lagrange's equations – Hamilton's Canonical equations – Hamilton's principle – Principle of least action – Canonical transformations – Differential forms and Generating functions – Lagrange and Poisson brackets.

Numerical Analysis

Numerical solutions of algebraic and transcendental equations – Method of iteration – Newton Raphson method – Rate of convergence – Solution of Linear algebraic equations using Gauss elimination and Gauss – Seidel methods.

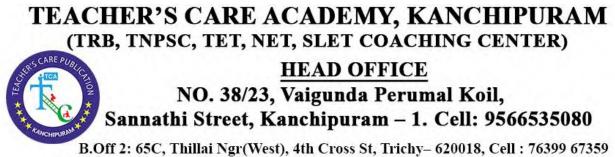
Finite differences – Lagrange, Hermite and Spline Interpolation, Numerical differentiation and integration – Numerical solutions of Ordinary differential equations using Picard, Euler, Modified Euler and Runge-Kutta methods.

Refference Books :

- 1) Classical Dynamics by Donald T.Greenwood
- 2) Classical Mechanics by Dr.J.C Upadhaya
- 3) Classical Mechanics by Hebert Goldstein, Charles P.Poole, John Safko 3rd Edition Pearson Publication
- 4) Classical Mechanics by R.Douglas Gregory
- 5) Principles of Mechanics by John L.Synge, Byron A.Griffith 2nd Edition, New York.

More Reference:

- PGTRB Previous Year Question Papers
- UGC NET Previous Year Question Papers
- SET (State eligibility Test) Previous Year Question Papers (Tamilnadu, Madhya Pradesh, Kerala, Gujarat, Chhattisgarh, Andhra Pradesh, Himachal Pradesh, West Bengal, Uttarakhand, Rajasthan, Maharashtra)



B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

8.1.1 SOME BASIC CONCEEPT IN MECHANICS

SPACE

Space is a geometric region occupied by bodies whose positions are described with the help

of co-ordinate system.

TIME

> It is measure of the succession of the events.

MASS

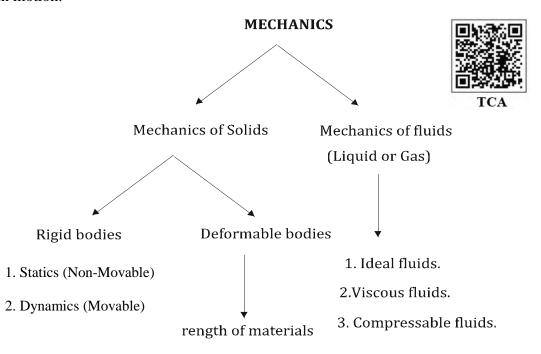
 \blacktriangleright It is used to measure the resistance to change the state of rest or motion is called inertia.

FORCE

> It is the effort required to change or tends to change the state of rest.

MECHANICS AND CLASSIFICATION

Mechanics is the science, that describes and the predicts the effect of objects either at rest or in motion.



DYNAMICS

Dynamics is the study of the motion interacting bodies. It describes this motion in terms of postulated laws.

CLASSICAL DYNAMICS

- Dynamics is the study of the motion of interacting bodies.
- Classical dynamics is restricted to those systems of interacting bodies for which quantum mechanical effects are negligible.
- The non-relativistic theories and methods of men such as Newton, Euler, Lagrange, and Hamilton are included, as well as the more recent relativistic dynamics of Einstein.

THE MECHANICAL SYSTEM:

Definition:

- Let us consider a mechanical system consisting of N particles, where a particle is an idealized material body having its mass concentrated at a point.
- > The motion of a particle is, therefore, the motion of a point in space.
- Since a point has no geometrical dimensions, we cannot specify the orientation of a particle, nor can we associate any particular rotational motion with it. In this non-relativistic treatment, we shall assume that the mass of each particle remains constant.

Equation of Motion:

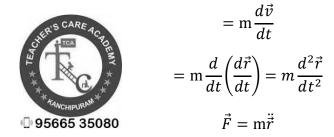
- > The differential equations of motion for a system of N particles can be obtained by applying Newton's laws of motion to the particles individually. For a single particle of mass m which is subject to a force \vec{F} , we obtain from Newton's second law the vector equation.
- ➢ For a single particle of mass m which is subject to a force

$$\vec{F} = m\vec{a}$$
$$= m\frac{d\vec{v}}{dt} [\text{ where } \vec{a} = \frac{d\vec{v}}{dt}]$$
$$= \frac{d}{dt} (m\vec{v})$$

$$=\frac{d\vec{v}}{dt}[\vec{p}=m\vec{v}]((\text{since }\vec{p}\text{ is the linear momentum})$$

$$\vec{F} = \vec{p}$$

 $\vec{F} = m\vec{a}$



> Here, $\vec{a}(\vec{v})$ is the acceleration measured relative to an inertial frame of reference.

DEGREES OF FREEDOM

The number of degrees of freedom = The number of coordinates- The number of independent equation of constraint.

EXAMPLE 1 :

> If the configuration of a system of N particles is described using 3N cartesian coordinates and if there are l independent equations of the constraints relating these coordinates then there are(3N - l) degrees of freedom.

EXAMPLE 2 :

The configuration of the system is specified by giving the locations of the three particles that is 9 cartesian coordinates. But reach rigid rod is represented mathematically by an independent equation of constraint. So $3N - l = 3 \times 3 - 3 = 6$ and the system has 6 a degree of freedom.

EXAMPLE 3 :

When a particle is moving in a plane, we may describe its motion in Cartesian coordinates or, more conveniently in polar coordinates r, θ we may then

$$q_1 = x, q_2 = y$$

 $q_1 = r = (x^2 + y^2)^{\frac{1}{2}}, \qquad q_2 = \theta = tan^{-1}\left(\frac{y}{x}\right)$

Alternatively we may also written as $x = q_1 cos q_2 y = q_1 sin q_2$

Or
$$x_i = x_i(q_1, q_2)$$

> If the problem involves spherical symmetry we may conveniently use spherical polar co ordinates (r, θ, φ) as (q_1, q_2, q_2) such that $x = rsin\theta cos\varphi$

$$y = rsin\theta sin\varphi$$
$$z = rcos\theta$$

Or
$$x = q_1 sinq_2 cosq_3$$

 $y = q_1 sinq_2 cosq_3$
 $x = q_1 cosq_2$
Or
 $x_i = x_i(q_1, q_2, q_3)$

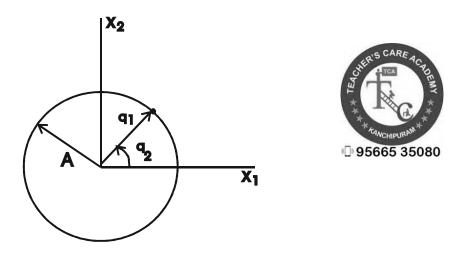
> In general the relation between the old Cartesian co-ordinates and the generalized coordinate can be written in the form $x_i = x_i(q_1, q_2, q_3, \dots, q_n)$.

EXAMPLE 4 :

> A rod of mass m and length l which is free to move in any direction on a frictionless inclined plane has only perpendicular to degrees of freedom as it can slide down and vertically.

EXAMPLE 5 :

A transformation from Cartesian to generalized coordinates, consider a particle which is constrained to move on a fixed circular path of radius a, as $(x_1^2 + x_2^2)^{\frac{1}{2}} = a$



> Let a single generalized coordinates q_1 represent the one degree of freedom. This polar angle can vary freely without violating the constant. In accordance with above diagram.Let us define a second generalized coordinates q_2 which is constant.

$$q_2 = a$$

The transformation equation are

$$x_1 = q_2 \, \cos q_1, x_2 = q_2 \, \sin q_1$$

> The jacobian for this transformation is $\frac{\partial(x_1, x_2)}{\partial(q_1, q_2)} = \begin{vmatrix} \frac{\partial x_1}{\partial q_1} & \frac{\partial x_1}{\partial q_2} \\ \frac{\partial x_2}{\partial q_1} & \frac{\partial x_2}{\partial q_2} \end{vmatrix} = -q_2$

> Hence the q's may be expressed as a functions of the x's except when the Jacobian is 0 at $q_2 = 0$ in this case the radius of circle is zero and the angle q_1 is undefined. These transformation equations are

$$q_1 = \tan^{-1}\left(\frac{x_2}{x_1}\right), \ q_2 = (x_1^2 + x_2^2)^{\frac{1}{2}},$$

Where we arbitrary take 0 ≤ q₁ ≤ 2πand 0 < q₂ < ∞ in the order that q's will be single-valued functions of the x's These transformation equations apply at the all points on the finite x₁, x₂ plane except at the origin.</p>

CLASSIFICATION OF DYNAMICAL SYSTEM

i.) Scleronomic

- A configuration of the system is given when the values of the generalized co ordinates $q_1, q_2, q_3, \dots, q_n$ are given by the equation of the form $x_i = x_i(q_1, q_2, q_3, \dots, q_n)$
- > Which is do not depend explicitly on time.

ii.) Rheonomic system

Rheonomic system, it is necessary to specify the time t as well then the equations will be of the form $x_i = x_i(q_1, q_2, q_3, \dots, q_n, t)$ (depending on time)

REMARK

Thus, in Scleronomic system, there will be only fixed constraints, whereas in a Rheonomic system there will be moving constraints

iii.) Conservative and non Conservative

> In a conservative system the generalized forces are derivable from a potential energy v =

 $v(q_1, q_2, q_3, \dots, q_n)$

(i.e) if $Q_1, Q_2, Q_3, \dots, Q_n$ represents generalized forces then

$$Q_1 = \frac{-\partial v}{\partial q_1}, Q_2 = \frac{-\partial v}{\partial q_2}, \dots, Q_n = \frac{-\partial v}{\partial q_n}$$

 $Q = -\nabla \vec{V}$

Otherwise system is non conservative

iv.) Holonomic and non-holonomic

> Let $q_1, q_2, q_3, \dots, q_n$ denote the generalized co-ordinates, describing a system and let t denotes the time and if all the constraints of the system can be expressed in equation of the form.

$$f_i(q_1, q_2, q_3, \dots, q_n, t) = 0$$

- > Which is independent of velocity of $\dot{q}_1, \dot{q}_2, \dot{q}_3, \dots, \dot{q}_n$
- > Where *i* is the i^{th} component, then the system is called Holonomic,
- However if the constraint cannot be expressed as relation among the generalized coordinates, then the system is called non-holonomic.

v.) Bilateral and unilateral system

- If at any point on constraint surface, both the forward and backward motions are possible, such a system is called Bilateral
- In this system, the constraint relation in the form of equation but not in the form of inequalities.
- However, if at some point on the constraint surface, the forward motion is not possible, while the constraint relation are expressed in the form of inequalities, then such a system is called Unilateral

vi.) Simple system

Systems which are scleronomic conservative holonomic are called simple system. It is also known as general system.

Key points			
Scleronomic- Time independent			
Rheonomic system- Time dependent			
Holonomic- Velocity independent			
Non-Holonomic- Velocity dependent	¹⁴ //CHIPURA™ ● 95665 35080		
Conservative - Generalized force derived form			
Non Conservative - potential energy, otherwise it is non conservative			
Bilateral -if forward and backward motion is possible			
- Constraint relation are in the form of equation			
Unilateral - if forward and backward motion is NOT possible, only backward			
motion is possible			

Virtual work

Suppose the configuration of a system of N particles is given by 3N Cartesian coordinates x_1, x_2, \dots, x_{3N} which are measured relative to an inertial frame and may be subject to constraints. At any given time, let assume that the coordinates moves through infinite decimal displacement $\delta x_1, \delta x_2, \delta x_3, \dots, \delta x_{3N}$ which are virtual or imaginary in the sense that they are assumed to occur without the passage of time, and do not necessarily conform to constraints. This small change the δx in the configuration of the system is known as virtual displacements.

$$\delta w = \sum_{j=1}^{3N} F_j \delta_{x_j} = \sum_{i=1}^{N} F_i \delta_{r_i}$$

$$\delta w_c = \sum_{i=1}^{N} R_i \delta_{r_i} = 0$$

$$\delta w_c = R_1 \delta_{r_1} + R_2 \delta_{r_2} = 0$$

Principal of virtual work

We can imagine arbitrary instantaneous change in the position vectors of the particles of the system, virtual displacements. An infinitesimal virtual displacement of ith particle of a system of N particles is denoted by δr_i . This is the displacement of position coordinates only and does not involve variation of time.

i.e.,
$$\delta r_i = \delta r_i(q_1, q_2, \dots, q_n)$$

Suppose the system is in equilibrium, then the total force on any particle is zero

i.e.,
$$F_i = 0$$
 $i = 1, 2, ..., N$

> The virtual work of the force F_i , in the virtual displacement δr_i will also be zero

ie.,
$$\delta W_i = F_i \cdot \delta r_i = 0$$

Similarly, the sum of virtual work for all the particles must vanish

i.e.,
$$\delta W = \sum_{i=1}^{N} F_i \cdot \delta r_i = 0$$

> This result represents the principle of virtual work which states that,

The work done is zero in the case of an arbitrary virtual displacement of a system from a position of equilibrium

 $F_i + R_i = 0$ (F_i is Applied force R_i Constrain Force)

$$\sum_{i=1}^{N} (F_i + R_i) \cdot \delta r_i = \sum_{i=1}^{N} F_i \cdot \delta r_i + \sum_{i=1}^{N} R_i \cdot \delta r_i$$

We restrict ourselves to the systems where the virtual work of the forces of constraints is zero e.g., in case of a rigid body.

> Then
$$\sum_{i=1}^{N} F_i \cdot \delta r_i = 0$$

i.e., for equilibrium of a system, the virtual work of applied forces is zero. We see that the principle of virtual work deals with the statics of a system of particles. However, we want a principle to deal with the general motion of the system and such a principle was developed by D' Alembert.

D'ALEMBERT PRINCIPLE

- According to Newton's second law of motion, the force acting on the ithparticle is given by $F_i - \dot{p}_i = 0$ i = 1, 2, ..., N
- > These equations mean that any particle in the system is in equilibrium under a force, which is equal to the actual force F_i , plus a reversed effective force \dot{p}_i . Therefore, for virtual displacement δr_i ,

$$\sum_{i=1}^{N} (F_i - \dot{p}_i) \cdot \delta r_i = 0$$

95665 35080

 \blacktriangleright But $F_i = F_i^a + f_i = 0$

➤ Then

$$\sum_{i=1}^{N} (F_i^{\ a} - \dot{p}_i) \cdot \delta r_i + \sum_{i=1}^{N} f_i \cdot \delta r_i = 0$$

Again, we restrict ourselves to the systems for which the virtual work of the constraints is zero

ie,
$$\sum_i f_i \cdot \delta r_i = 0$$
 Then $\sum_{i=1}^N (F_i^a - \dot{p}_i) \cdot \delta r_i = 0$.

A workless constraint is any bilateral constraint such that the virtual work of the corresponding constraint forces is zero for any virtual displacement which is consistent with the constraints.

SUMMARIZED PRINCIPLE OF VIRTUAL WORK

The necessary and sufficient condition for the static equilibrium of any initially motionless Scleronomic system which is subject to workless constraints is that zero virtual work by done by the applied forces in the moving through an arbitrary virtual displacement satisfying the constraints.

D'Alembert's principal

Consider a system of N particles and write the equation of motion for each particle in the form $F_i + R_i - m_i \ddot{r}_i = 0$ (F_i is Applied force R_i is Constrain Force)

LAGRANGE'S FORM OFD' ALEMBERT'S PRINCIPAL

$$\delta W = \sum_{i=1}^{n} (F_i + R_i - m_i \ddot{r}_i) \delta r_i = 0$$

Example

> A particle of mass m is suspended by a massles wire of length $r = a + bcos\omega t$ (a > b > 0)to form a spherical pendulum. Equation of motion is $(a + bcos\omega t)\ddot{\phi}sin\theta - 2bw\dot{\phi}sin\omega tsin\theta + 2(a + bcos\omega t)\dot{\theta}\phi cos\theta = 0$

The necessary and sufficient condition for static equilibrium is that all Q'S due to the applied force is zero.

ENERGY AND MOMENTUM

POTENTIAL ENERGY

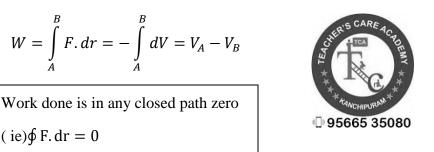
Let us consider a single particle whose position given by the Cartesian coordinates(x,y,z).suppose that the total force F acting on the particle has the components

$$F_{x} = -\frac{\partial V}{\partial x}$$

$$F_{y} = -\frac{\partial V}{\partial y}$$

$$F_{z} = -\frac{\partial V}{\partial z}$$
(1) 95665 35080

Where the potential energy function V(x, y, z) is single-valued function of position only, that is not a function of velocity or time. A force F meeting these conditions is known as a conservative force. Let us consider the work dW done by the force F as it moves through an infinitesimal displacement dr. we have $dW = F \cdot dr = F_x dx + F_y dy + F_z dz$



=Two forces systems according on a given rigid body or EQUIPOLLENT if they have the same total force and the same total moment with respect to an arbitrary point

WORK AND KINETIC ENERGY

Suppose we define the kinetic energy T of a particle of mass m by

$$T = \frac{1}{2}mv^2$$

Where v is the velocity of the particle relative to an inertia reference frame. Let us considered the line integral of equation

$$W = \int_{A}^{B} F \cdot dr = -\int_{A}^{B} dV = V_{A} - V_{B}$$

which gives the work done on the particle by the total force F of as the particle moves over a certain path from A to B. In accordance with Newton's law of motion we cancan replace F by *mr* and obtain

$$W = m \int_{A}^{B} \ddot{r} \, dr = \frac{1}{2} m \int_{A}^{B} \frac{d}{dt} (\dot{r} \, . \, \dot{r}) dt = \frac{1}{2} m \int_{A}^{B} d(v^2)$$

Where each integral is evaluated over the same path. then, using the definition of kinetic energy, we obtain $W = \frac{1}{2}m(v_B{}^2 - v_B{}^2) = T_B - T_A$ this is called principle of work and **kinetic energy:**

The increase in kinetic energy of a particle as it moves from one orbitary point to another is equal to the work done by the forces acting on the particle during the given interval.

Note that the force F may arise from any source; it need not be conservative. Furthermore, force components which remain normal to the particle velocity v do no work and can be neglected the applying the principle.

CONSERVATION OF ENERGY.

> If the only forces acting on a given particle are conservative then

$$W = \int_{A}^{B} F dr = -\int_{A}^{B} dV = V_{A} - V_{B}$$
 applies and, with the aid of

 $\gg W = \frac{1}{2}m(v_B{}^2 - v_B{}^2) = T_B - T_A$ we obtain

$$V_A - V_B = T_B - T_A$$
 (or) $V_A + T_A = V_B + T_B = E$

- Since the points A and B arbitrary, we conclude that the total mechanical energy E remains constant during the motion of the particle. This is the principle of conservation energy.
- Now let us consider the more general case of a system of N particles whose configurations is satisfied by the Cartesian x_1, x_2, \dots, x_{3N} . If the only force which do work on the system during its motion are given by

$$\succ \quad F_j = -\frac{\partial V}{\partial x_j}$$

- > Where the potential energy $V(x_1, x_2, \dots, x_{3N})$ is a single-valued function of position only, then the total energy E is again conserved.
- Frequently it is convenient to specify the configuration of a system of particles by using generalized coordinates.

EQUILIBRIUM AND STABILITY

- Consider a system of N particles whose applied forces are conservative and are obtained from a potential energy function of the form $V(x_1, x_2, \dots, x_{3N})$.
- > The virtual work of these applied forces $\delta W = -\sum_{j=1}^{3N} \frac{\partial V}{\partial x_j} \delta x_j = -\delta V$
- > Which we note is linear in the $\delta x'$ s and is, therefore, the first variation of the potential energy. Then, using the principle of virtual work,

The necessary and sufficient condition for the static equilibrium of this system is that $\delta V = 0$

> A holonomic system having independent q's the condition that $\delta V = 0$

KINETIC ENERGY OF A SYSTEM

$$T = \frac{1}{2}m\dot{r_c}^2 + \frac{1}{2}\sum_{i=1}^{N}m\dot{\rho_c}^2$$

KONIG'S THEOREM

> The total kinetic energy of a system is equal to sum of $\frac{1}{2}m\dot{r}_c^2$ the kinetic energy due to a particle having a mass equal to the total mass of the system and moving with the velocity of the centre of mass and $\frac{1}{2}\sum_{i=1}^{N}m\dot{\rho}_c^2$ the kinetic energy due to the motion of the system relative to its centre of mass.

THE GENERALIZED MOMENTUM

> Consider a system whose configuration is described by n generalized coordinates. Let us define the lagrangian function $L(q, \dot{q}, t)$

$$L = T - V$$

> The generalize the momentum p_i associated with the generalized coordinate q_i is defined by the equation $p_i = \frac{\partial T}{\partial \dot{q}_i}$

EXAMPLE 1 :

> Consider a free particle of mass m whose posititonis given by the Cartesian coordinates (x, y, z) the kinetic energy is $T = \frac{m}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$

EXAMPLE 2 :

> If the position of the particle is given by the spherical coordinates (r, θ, ϕ) the kinetic energy is $T = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\phi}^2 sin^2 \phi)$ using this equation $p_i = \frac{\partial T}{\partial \dot{q}_i}$ we get

$$p_r = m\dot{r}$$

 $p_{ heta} = mr^2\dot{ heta}$
 $p_{\phi} = mr^2\phi\dot{sin^2}\phi$

- > Where p_r is the linear momentum in the radial direction
- > p_{θ} is the horizontal component of the angular momentum
- > p_{ϕ} is the vertical component of angular Momentum

- 1. For a single of mass m which is subject to a force F then
 - (a) F = ma

(b)
$$F = \frac{dp}{dt}$$

(c) (c)
$$F = mv$$

(d) (d)
$$F = \frac{ma}{2}$$

- 2. The equation of a motion for the system of N particle is
 - (a) $F_i + R_i + m_i \ddot{r}_i = 0$
 - (b) $\ddot{r}_i = F_i + R_i + m_i$
 - (c) $F_i + R_i + m_i \ddot{r}_i = 0$
 - (d) $F_i + R_i m_i \ddot{r}_i = 0$

3. The equation of a motion for the system of N particle is $F_i + R_i - m_i \ddot{r}_i = 0$ then F_i , R_i is

- (a) Constraint and applied force
- (b) both Constraint force
- (c) applied and constraint force
- (d) both applied force

4. The number of degrees of freedom is

- (a) The number of coordinates –number of independent of equation of constraint.
- (b) Number of independent of equation of constraint -The number of coordinates.
- (c) The number of coordinates + number of independent of equation of constraint.
- (d) Number of independent of equation of constraint -The number of coordinates

5. If the configuration of a system of N particle is described using 3N Cartesian coordinates and if there are *l* independent equation of constraints relating these coordinates then the

degrees of freedom is

- (a) 3N l
- (b) 3N 3l
- (c) N-3l
- (d) N l

6. Three particles are connected by rigid rod to form a triangle body eith particle at its corners. Then the number of degrees of freedom of a system is (*POLY TRB 2021*)

- (a) 4
- (b) 3
- (c) 6
- (d) 9

7. Which one is noholonomic constraints

- (a) $\sum_{i=1}^{n} a_{ji} dq_i a_{ji} dt = 0$ (j = 1, 2, ..., m)
- (b) $\sum_{i=1}^{n} a_{ii} dq_i + dt = 0$ (j = 1, 2, ..., m)
- (c) $\sum_{i=1}^{n} a_{ji} + a_{ji} dt = 0$ (j = 1, 2, ..., m)
- (d) $\sum_{i=1}^{n} a_{ji} dq_i + a_{ji} dt = 0$ (j = 1, 2, ..., m)

8. Which axis the virtual work of the constrain force is

- (a) $\delta W_c = \sum_{i=1}^n R_i \cdot \delta r_i$
- (b) $\delta W_c = \sum_{i=1}^n R_i + \delta r_i$
- (c) $\delta W_c = \sum_{i=1}^n R_i \delta r_i$

(d)
$$\delta W_c = \sum_{i=1}^n R_i$$

9. The necessary and sufficient condition for static equilibrium is that all the Q's due to the applied force to______

- (a) 1
- (b) -1
- (c) Infinity
- (d) 0

10. The work done in moving around any closed path is

- (a) $\oint F.dr \neq 0$
- (b) $\oint F. dr = 0$
- (c) $\oint F.dr = m.r_i$
- (d) $\oint F. dr = \frac{1}{2}mr^2$

SCAN QR CODE FOR ANSWERS

8.1.2 LAGRANGE'S EQUATIONS

Lagrange's equation of d' Alembert principle

- Consider a system of N particles. The transformation equations for the position vectors of the particles are
- ▶ $r_i = r_i(q_1, q_2, \dots, q_n, t)$ $i = 1, 2, \dots, N$ (1)
- > Where t is time and $q_k(k = 1, 2, ..., n)$ are generalized coordinates.
- Differentiating equation(1) with respect to t, we obtain the velocity of the i th particle

i.e.,
$$\frac{dr_i}{dt} = \frac{\partial r_i}{\partial q_1} \frac{dq_1}{dt} + \frac{\partial r_i}{\partial q_2} \frac{dq_2}{dt} + \dots + \frac{\partial r_i}{\partial q_k} \frac{da_k}{dt} + \dots + \frac{\partial r_i}{\partial q_n} \frac{dq_n}{dt} + \frac{\partial r_i}{\partial t}$$

or $v_i = \dot{r}_i = \sum_{k=1}^n \frac{\partial r_i}{\partial q_1} \dot{q}_k + \frac{\partial r_i}{\partial t}$

- > where q_k are the generalized velocities.
- The virtual displacement is given by

$$\delta r_{i} = \frac{\partial r_{i}}{\partial q_{1}} \delta q_{1} + \frac{\partial r_{i}}{\partial q_{2}} \delta q_{2} + \dots + \frac{\partial r_{i}}{\partial q_{k}} \delta q_{k} + \dots + \frac{\partial r_{i}}{\partial q_{n}} \delta q_{n}$$

Or
$$\delta r_{i} = \sum_{k=1}^{n} \frac{\partial r_{i}}{\partial q_{k}} \delta q_{k}$$

- Since by the definition the virtual displacement do not dependent time,
- According D' Alembert principle,

$$\sum_{i=1}^{n} (F_i - \dot{p}_i) . \, \delta r_i = 0$$

 $\operatorname{Here}_{i=1}^{N} F_{i} \cdot \delta r_{i} = \sum_{i=1}^{N} F_{i} \cdot \sum_{k=1}^{n} \frac{\partial r_{i}}{\partial q_{k}} \delta q_{k} = \sum_{k=1}^{n} \sum_{i=1}^{N} [F_{i} \cdot \frac{\partial r_{i}}{\partial q_{k}}] \delta q_{k} = \sum_{k=1}^{n} G_{k} \delta q_{k}$

Where
$$G_k = \sum_{i=1}^{N} F_i \cdot \frac{\partial r_i}{\partial q_k}$$

 $G_k = \sum_{i=1}^{N} F_i \cdot \frac{\partial r_i}{\partial q_k}$

are called the components of generalized force associated with the generalized coordinates q_k . This may be mentioned that as the dimensions of the generalized coordinates need not be those of length; similarly the generalized force components G_K may have dimensions different than those of force. However, the dimensions of $G_k \delta q_k$, are those of work.

> For example, if δq_k , has the dimensions of length, G_k will have the dimensions of force, if δq_k has the dimensions of angle θ , G_k , will have the dimensions of torque (τ).

 \succ It is easy to prove that

> and
$$\frac{d}{dt} \left(\frac{\partial r_i}{\partial q_k} \right) = \frac{\partial}{\partial q_k} \left(\frac{dr_i}{dt} \right) = \frac{\partial v_i}{\partial q_k}$$
$$\frac{\partial r_i}{\partial q_k} = \frac{\partial v_i}{\partial q_k}$$

Therefore equation (1) is

$$\sum_{i=1}^{N} m_{i} \cdot \ddot{r}_{i} \cdot \frac{\partial r_{i}}{\partial q_{k}} = \sum_{i=1}^{N} [m_{i} \cdot v_{i} \cdot \frac{\partial v_{i}}{\partial q_{k}} [m \cdot v_{i} \cdot \frac{\partial v_{i}}{\partial q_{k}}] - m_{i} \cdot v_{i} \cdot \frac{\partial v_{i}}{\partial q_{k}}] \cdot \delta q_{k}$$

$$\sum_{i=1}^{N} \dot{p}_{i} \cdot \delta r_{i} = \sum_{k=1}^{n} \sum_{i=1}^{N} [\frac{d}{dt} (m_{i} \cdot v_{i} \cdot \frac{\partial v_{i}}{\partial q_{k}}) - m_{i} \cdot v_{i} \cdot \frac{\partial v_{i}}{\partial q_{k}}] \cdot \delta q_{k}$$

$$= \sum_{i=1}^{N} \left[\frac{d}{dt} \left\{ \frac{\partial}{\partial q_{k}} \left(\sum_{i=1}^{N} \frac{1}{2} m_{i} (v_{i} \cdot v_{i}) \right) \right\} - \frac{\partial}{\partial q_{k}} \left\{ \sum_{i=1}^{N} \frac{1}{2} m_{i} (v_{i} \cdot v_{i}) \right\} \right] \delta q_{k}$$

$$\sum_{k=1}^{n} \left[\frac{d}{dt} \left(\frac{\partial T}{\partial q_{k}} \right) - \frac{\partial T}{\partial q_{k}} \right] \delta q_{k} \dots \dots (**)$$
Here $\frac{d}{dt} \left(\frac{\partial r_{i}}{\partial q_{k}} \right) = \sum_{j=1}^{n} \frac{\partial^{2} r_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial r_{i}}{\partial t} \dots (i)$

> And its partial derivative with respect q_k is

$$\frac{\partial v_i}{\partial q_k} = \frac{\partial}{\partial q_k} \left(\frac{dr_i}{dt} \right) = \sum_{j=1}^n \frac{d}{dt} \left(\frac{\partial^2 r_i}{\partial q_j} \right) - \frac{\partial T}{\partial q_k} \dot{q}_j + \frac{\partial^2 r_i}{\partial q_k \partial t}$$
(ii)

➢ From equation (i) and (ii)

$$\frac{d}{dt} \left(\frac{\partial r_i}{\partial q_k} \right) = \frac{\partial v_i}{\partial q_k}$$
$$\frac{\partial v_i}{\partial q_k} = \frac{\partial v_i}{\partial \dot{q}_k} \left[\sum_{j=1}^n \frac{\partial r_i}{\partial q_k} \dot{q}_j + \frac{\partial r_i}{\partial t} \right] = \frac{\partial r_i}{\partial q_j} \delta_{jk} = \frac{\partial r_i}{\partial q_k}$$

➢ As the constraints are holonomic and

$$\frac{\partial \dot{q_j}}{\partial \dot{q_k}} = \delta_{jk}$$

- ➤ Where $\sum_i \frac{1}{2} m_i (v_i, v_i) = \sum_i \frac{1}{2} m_i v_i^2 = T$ is the kinetic energy of the system.
- > Substituting for $\sum_{i} F_{i} \delta r_{i}$ from (**) in (*)

UNIT-X PROBABILITY THEORY

Your Success is Our Goal ...

SERVICES AVAILABLE FOR PG TRB EXAM

- 🔶 Material for All 10 Units
- E-Book for Psychology & Education Methodology
- 🔶 E-Book for GK
- Online Recorded Video Classes
- 🔶 Online Test
- 🔶 Question Bank
- Regular Classes

tcaexamguide 🔊

Teacher's Care Academy 🗾

www.tcaexamguide.com

tcaexamguide@gmail.com 📉

Contents

1	Prob	bability and Random Variables 5			
	1.1	1 Preliminaries - Sample Space			
		1.1.1	Axioms of Probability	8	
		1.1.2	Theorems of probability	8	
	1.2	Condi	tional probability	10	
		1.2.1	Bayes Theorem	10	
	1.3	Rando	om Variables	14	
		1.3.1	Types of Random Variables	16	
		1.3.2	Probability Distribution of a Random Variable	18	
	1.4	Discre	te and Continuous Random Variables	22	
	1.5	Functi	ons of a Random Variable	31	
	1.6	Moments and Generating Functions		32	
		1.6.1	Moments of a Distribution Function	32	
		1.6.2	Generating Functions	46	
	1.7	Multip	le Random Variables	55	
		1.7.1	Conditional distributions	61	
		1.7.2	Independent Random Variables	64	
		1.7.3	Conditional Expectation	65	
		1.7.4	Transformation of multiple random variables	66	
	1.8	Proble	ems	75	
	1.9	Objec	tive Questions	83	
^	Dies	wata D	robobility Distributions	87	
2	2.1		robability Distributions	-	
	∠.1	ine B	ernoulli and Binomial Random Variables	Ø/	

		2.1.1 Properties of Binomial distribution
		2.1.2 Problems
	2.2	The Poisson Random Varaible
		2.2.1 Problems
	2.3	The Geometric Random Variable
	2.4	The negative binomial random variable
	2.5	The hypergeometric random variable
	2.6	Problems on discrete distributions
	2.7	Objective Questions
3	Con	tinuous Probability Distributions 114
	3.1	Uniform distribution(Rectangular distribution)
	3.2	Normal distribution
	3.3	Gamma distribution
	3.4	Exponential distribution
	3.5	Weibull distribution
	3.6	The Cauchy distribution
	3.7	The Beta distribution
	3.8	Objective Questions
4	Lim	it Theorems & Sampling 135
	4.1	Order Statistics and their distributions
	4.2	Chebyshev's inequality
	4.3	Limit Theorems
		4.3.1 Modes of convergence
		4.3.2 Weak law of large numbers
		4.3.3 Central limit theorem
		4.3.4 Applications of Central Limit Theorem
		4.3.5 Assumptions of Central Limit Theorem
		4.3.6 Strong law of large numbers
	4.4	Sample Survey
	4.5	Sampling method

		4.5.1	Merits and Limitations of Sampling
		4.5.2	Characteristics Of A Good Sample Design
	4.6	Sampl	ing error
	4.7	Non-S	ampling Errors
		4.7.1	Non-response
		4.7.2	Errors in measurement
	4.8	Object	ive Questions
5	Esti	mation	& Hypothesis Testing 159
5.1 Parameter Estimation			eter Estimation
		5.1.1	Point Estimation
		5.1.2	Unbiased Estimator
		5.1.3	Efficiency
		5.1.4	Consistency
		5.1.5	Sufficiency
		5.1.6	Method of Moments
		5.1.7	Maximum Likelihood Estimation
	5.2	Interva	al estimation
		5.2.1	Confidence Interval on the mean of Normal Distribution, variance
			known
		5.2.2	Confidence Interval on the mean of Normal Distribution, variance
			unknown
		5.2.3	Confidence Interval on the variance of Normal Distribution 191
		5.2.4	Confidence Interval on a Proportion
		5.2.5	Two-Sample Confidence Interval Estimation
	5.3	Testin	g of hypothesis
		5.3.1	Introduction
		5.3.2	Neyman-Pearson Lemma
		5.3.3	Tests of Hypothesis on a Single Sample
		5.3.4	Test of Hypothesis on Two Samples
	5.4	Goodr	ness of Fit
	5.5	Objective Questions	

5.6	Analys	is of variance and significance testing			
	5.6.1	Introduction			
	5.6.2	One-way ANOVA			
5.7	5.7 TWO-WAY ANOVA				
	5.7.1	Comparison between one-way ANOVA and two-way ANOVA 278			
5.8	Completely randomized design (CRD)				
5.9	Randomized block design (RBD)				
5.10 Latin square design (LSD)					
	5.10.1	Objective Questions			

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER)

HEAD OFFICE NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

UNIT X: PROBABILITY THEORY

SYLLABUS

Sample space – Discrete Probability – Independent events – Baye's theorem – Random variables and Distribution functions (Univariate and Multivariate) – Expectation and Moments – Moment Generating function – Characteristic functions and Cumulants – Independent Random variables – Marginal and conditional distributions – Probability inequalities (Tchebyshev, Markov, Jensen) – Modes of convergence, Weak and Strong laws of large numbers – Central limit theorem (i.i.d case). Probability distributions – Binomial, Poisson, Uniform, Normal, Exponential, Gamma, Beta, Cauchy distributions – Standard Errors – Sampling distributions of t, F and Chi square and their uses in tests of significance – ANOVA – Large sample tests for mean and proportions.

<u>REFERENCE BOOKS:</u>

- Rohatgi, Vijay K., and AK Md Ehsanes Saleh. An introduction to probability and statistics. John Wiley & Sons, 2015.
- 2) J. Johnston and J. DiNardo, Econometric Methods, 4th Edition, The Mc-Graw-Hill, 1997.
- 3) S. Ross, A First Course in Probability, 9th Edition, Pearson, 2014.
- 4) R. V. Hogg, J. McKean, and A. T. Craig, Introduction to Mathematical Statistics, 7th Edition, Pearson Education, 2012.
- W. H. Hines, Montgomery, et. al., Probability and Statistics for Engineering, John Wiley & Sons, Inc., 2003.
- R. V. Hogg and E. A. Tanis, Probability and Statistical Inference, 6th Edition Pearson, 2001.

Chapter 1

Probability and Random Variables

The theory of mathematical probability has its origin in the 17th century. There are three different approaches of measuring probabilities. They are classical probability, relative frequency of occurrence and axiomatic probability.

1.1 Preliminaries - Sample Space

Definition 1.1.1 (Trial or Random Experiment). Experiment can be repeated under the same conditions but the results (Outcomes) cannot be predicted in any replication; any one of the possible way is called random experiments or trial.

For example, throwing a die is trial and tossing a coin is trial.

Definition 1.1.2 (Event). Any possible outcomes of a random experiment or trial are called as event or cases.

For example, Getting 1 or 2 or \cdots or 6 on a die is an event.

Definition 1.1.3 (Simple event). Event consisting of only one sample point of a sample space is called a simple event.

For example, let a die be rolled once, and A is the events that face number 5 turned up, and then A is a simple event.

Definition 1.1.4 (Compound events). When an event is decomposable in to a number of sample events, then it is called as compound events.

For example, the sum of two numbers shown by the upper faces of the two die is seven in the upper spaces of the two dice is seven in the simultaneous throw of the two unbiased dice, is a compound event as it can be decomposable.

Definition 1.1.5 (Sample space). The set of all outcomes or events of an experiment is called as sample space. It is denoted as *S*.

Example **1.1.1**: If the outcome of an experiment consists in the determination of the sex in a newborn child, then

$$S = \{g, b\}$$

where the outcome g means that the child is a girl and b that it is a boy.

Example 1.1.2: If the outcome of an experiment is the order of finish in a race among the 7 horses having post positions 1,2,3,4,5,6,7, then

$$S = \{ all 7! permutations of (1, 2, 3, 4, 5, 6, 7) \}$$

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse comes in first, then the number 3 horse, then the number 1 horse , and so on.

Example 1.1.3: If the experiment consists of tossing two dice, then the sampe space consists of the 36 points

$$S = \{(i, j) : i, j = 1, 2, 3, 4, 5, 6\}$$

where the outcome (i, j) is said to occur if *i* appears on the leftmost die and *j* on the other side.

Example 1.1.4: If the experiment consists of measuring (in hours) the lifetime of a transitor, then the sample space consists of all nonnegative real numbers. That is,

$$S = \{x : 0 \le x < \infty\}.$$

Example 1.1.5: A sample space of tossing a coin once is

$$S = \{H, T\}, n(S) = 2.$$

Example 1.1.6: A sample space of tossing a coin twice,

$$S = \{HH, HT, TH, TT\}, n(S) = 4$$

Definition 1.1.6 (Mutually exclusive events). Events that are so related among them are said to be mutually exclusive, if the occurrence of one excludes the possibility of the occurrence of the other or in other words, two events are mutually exclusive.

For example, In tossing a coin, the events head and tail are mutually exclusive, because if the outcome is head, then the possibility of getting a tail in the same trial is ruled out,

Definition 1.1.7 (Equally likely). Events said to be equally likely if there is no reason to expect any one in preference to other.

For example, in throwing a die all the six faces are equally likely to occur.

Definition 1.1.8 (Independent events). A set of events are said to be independent if the occurrence of any event does not affect the chance of the occurrences of any other event of the set.

For example: When two coins (A & B) are tossed together or separately, the occurrence of the head or the tail in the case of first coin(B) does not affect the probability of the occurrence of the second coin(B).

Example 1.1.7: A die is rolled *n* times. The sample space is the pair (S, E), where *S* is the set of all *n*-tuples (x_1, x_2, \dots, x_n) , $x_i \in \{1, 2, 3, 4, 5, 6\}$, $i = 1, 2, \dots, n$, and *E* is the class of all subsets of *S*, which contains 6^n elementary events.

The event A that 1 shows at least once is the set

 $A = \{(x_1, x_2, \cdots, x_n): \text{ at least one of } x'_i s \text{ is } 1\} = S - \{(x_1, x_2, \cdots, x_n): \text{ none of the } x'_i s \text{ is } 1\}$

$$A = S - \{(x_1, x_2, \cdots, x_n) : x_i \in \{2, 3, 4, 5, 6\}, i = 1, 2, \cdots, n\}.$$

Example 1.1.8: Consider a pointer that is free to spin about the center of a circle. If the pointer is spun by impulse, it will finally come to rest at some point. On the assumption that the mechanism is not rigged in any manner, each point on the circumference is a possible outcome of the experiment. The set *S* consists of all points $0 \le x < 2\pi r$, where *r* is the radius of the circle. Every one-point set $\{x\}$ is a simple event, namely, that the pointer will come to rest at *x*. The events of interest are those in which the pointer stops at a point belonging to a specified arc. Hence *E* is taken to be the Borel σ -field of subsets of $[0, 2\pi r)$.

Definition 1.1.9 (Classical definition of Probability). If an experiment has '*n*' mutually exclusive, equally likely and exhaustive cases, out of which '*m*' favorable to the happening of the event *A*, then the probability of the happening of *A* is denoted by P(A) and is defined as P(A) = m/n, where *m* is the favourable cases and where *n* is the total number of cases.

In general, Probability of an event = Number of favourable outcomes / Total number of outcomes.

1.1.1 Axioms of Probability

Let *S* be a sample space and *A* be an event in *S*. then P(A) is called the probability of the event if the following conditions are satisfied:

- **1.** $P(A) \ge 0$
- **2.** P(S) = 1
- 3. If A and B are mutually exclusive events. $P(A \cup B) = P(A) + P(B)$

Relative frequency theory of Probability

Classical approach is useful for solving problems involving game of chances, ex: throwing dice, coins etc., but if applied to other types of problems it does not provide answers. If the experiment be repeated a large number of times under essentially identical conditions, the limiting value of the ratio of the number of times the event A happens to the total number of trials of the experiments as the number of trials increases indefinitely, is called the probability of the occurrence of A.

Thus $P(A) = \lim_{n \to \infty} \frac{m}{n}$

1.1.2 Theorems of probability

- 1. Addition theorem
- 2. Multiplication theorem

Addition theorem of probability

Two events A and B are said to be mutually exclusive, if the occurrence of one event precludes the occurrence

The probability that Event A or Event B occurs is equal to the probability that Event A occurs plus the probability that Event B occurs minus the probability that both Events A and B occur.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Rule of Addition

If A and B are defined on a sample space, then: P(A OR B) = P(A) + P(B) - P(A AND B).

If A and B are mutually exclusive, then P(A AND B) = 0. Then P(A OR B) = P(A) + P(B) - P(A AND B) becomes P(A OR B) = P(A) + P(B).

Multiplication theorem of probability

This rule states that if the two events A and B are independent the product of their separate probability gives the probability of joint occurrence

$$P(A \text{ and } B) = P(A) \times P(B)$$

Example 1.1.9: In the experiment of tossing two coins fin the probability of both are heads.

Multiplication rule for dependent events

This rule states if two events, A and B are dependent, the probability of occurrence of one event is dependent on the occurrence of the other event.

$$P(A \text{ and } B) = P(A) \times P(A/B)$$

If A and B are two events defined on a sample space, then: P(A AND B) = P(B)P(A | B).

This rule may also be written as P(A | B) = P(A AND B)P(B).

P(A | B) = P(A AND B)P(B) (The probability of *A* given *B* equals the probability of *A* and *B* divided by the probability of *B*.)

If A and B are independent, then $P(A \mid B) = P(A)$.

Then P(A AND B) = P(A | B)P(B) becomes P(A AND B) = P(A)P(B).

1.2 Conditional probability

Let A and B any two independent events, the conditional probability of A and B will be represented as follows.

1. Conditional probability for A given that B has happened,

That is,
$$(A/B) = \frac{P(A \cap B)}{P(B)}$$

 Conditional probability for *B* given that *A* has happened, That is,

$$(A/B) = \frac{P(A \cap B)}{P(A)}$$

1.2.1 Bayes Theorem

 $P(A_k \mid B) =$

Bayes' theorem (also known as Bayes' rule) is a useful tool for calculating conditional probabilities. Bayes' theorem can be stated as follows:

Theorem 1.2.1. Let $A_1, A_2, ..., A_n$ be a set of mutually exclusive events that together form the sample space *S*. Let *B* be any event from the same sample space, such that P(B) > 0. Then,

$$P(A_{k} | B) = \frac{P(A_{k} \cap B)}{[P(A_{1} \cap B) + P(A_{2} \cap B) + ... + P(A_{n} \cap B)]}$$

Note 1: Invoking the fact that $P(A_k \cap B) = P(A_k) P(B \mid A_k)$, Baye's theorem can also be expressed as

$$P(A_k) P(B \mid A_k)$$

$$[P(A_1) P(B | A_1) + P(A_2) P(B | A_2) + ... + P(A_n) P(B | A_n)]$$

We can write the equation as

$$P(A_i/B) = \frac{P(B \mid Ai) \times P(Ai)}{\sum (i = 1 \text{ to } n)P(B \mid Ai) + P(Ai)}$$

Example 1.2.1: What is the probability of getting a 2 or a 5 when a die is rolled?

Solution:

Taking the individual probabilities of each number, getting a 2 is 1/6 and so is getting a 5 .

Applying the formula of compound probability,

Probability of getting a 2 or a 5,

P(2 or 5) = P(2) + P(5) − P(2 and 5)
⇒
$$1/6 + 1/6 - 0$$

⇒ $2/6 = 1/3$.

Example 1.2.2: Consider the example of finding the probability of selecting a black card or a 6 from a deck of 52 cards.

Solution:

We need to find out P(B or 6) Probability of selecting a black card = 26/52

Probability of selecting a 6 = 4/52

Probability of selecting both a black card and a 6 = 2/52

$$P(B \text{ or } 6)$$
 $P(B) + P(6) - P(B \text{ and } 6)$
= $26/52 + 4/52 - 2/52$
= $28/52$
= $7/13$.

Example 1.2.3: Say, a coin is tossed twice. What is the probability of getting two consecutive tails?

Solution:

Probability of getting a tail in one toss = 1/2

The coin is tossed twice. So 1/2 * 1/2 = 1/4 is the answer.

Here's the verification of the above answer with the help of sample space.

When a coin is tossed twice, the sample space is $\{(H, H), (H, T), (T, H), (T, T)\}$.

Our desired event is (T,T) whose occurrence is only once out of four possible outcomes and hence, our answer is 1/4.

Example 1.2.4: Consider another example where a pack contains 4 blue, 2 red and 3 black pens. If a pen is drawn at random from the pack, replaced and the process repeated 2 more times, What is the probability of drawing 2 blue pens and 1 black pen?

Solution

Here, total number of pens = 9

Probability of drawing 1 blue pen = 4/9

Probability of drawing another blue pen = 4/9

Probability of drawing 1 black pen = 3/9

CHER'S CARE 4 CAPE

Probability of drawing 2 blue pens and 1 black pen = 4/9 * 4/9 * 3/9 = 48/729 = 16/243

Example 1.2.5: A pack contains 4 blue, 2 red and 3 black pens. If 2 pens are drawn at random from the pack, NOT replaced and then another pen is drawn. What is the probability of drawing 2 blue pens and 1 black pen?

Solution:

Probability of drawing 1 blue pen = 4/9

Probability of drawing another blue pen = 3/8

Probability of drawing 1 black pen = 3/7

Probability of drawing 2 blue pens and 1 black pen = 4/9 * 3/8 * 3/7 = 1/14

Example **1.2.6**: What is the probability of drawing a king and a queen consecutively from a deck of 52 cards, without replacement.

Solution:

Probability of drawing a king = 4/52 = 1/13.

After drawing one card, the number of cards are 51.

Probability of drawing a queen = 4/51.

Now, the probability of drawing a king and queen consecutively is 1/13 * 4/51 = 4/663.

Example **1.2.7**: In a class, 40% of the students study math and science. 60% of the students study math. What is the probability of a student studying science given he/she is already studying math?

Solution:

 $\mathrm{P}(\mathrm{M} \text{ and } \textbf{S}) = 0.40$

13

P(M) = 0.60

 $P(S \mid M) = P(M \text{ and } S)/P(S) = 0.40/0.60 = 2/3 = 0.67$

Example 1.2.8: A single coin is tossed 5 times. What is the probability of getting at least one head?

Solution:

Consider solving this using complement.

Probability of getting no head = P(all tails) = 1/32

P(at least one head) = 1 - P(all tails) = 1 - 1/32 = 31/32.

Example 1.2.9: What is the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled?

Solution:

Let the event of the occurrence of a number that is odd be 'A' and the event of the occurrence of a number that is less than 5 be 'B'. We need to find P(A or B).

 $\mathrm{P}(\mathrm{A})=3/6$ (odd numbers =1,3 and 5)

P(B)=4/6 (numbers less than $5=1,2,3 \mbox{ and 4}$)

P(A and B) = 2/6 (numbers that are both odd and less than 5 = 1 and 3)

Now, P(A or B) = P(A) + P(B) - P(A or B)

$$= 3/6 + 4/6 - 2/6$$

 $= 5/6$

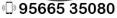
Example 1.2.10: A box contains 4 chocobar's and 4 ice creams. Tom eats 3 of them one after another. What is the probability of sequentially choosing 2 chocobar's and 1 ice-cream?

Solution:

Probability of choosing 1 chocobar = 4/8 = 1/2

After taking out 1 chocobar, the total number is 7 .

Probability of choosing 2 nd chocobar = 3/7



Probability of choosing 1 ice-cream out of a total of 6 = 4/6 = 2/3

So the final probability of choosing 2 choc-bar's and 1 ice-cream = 1/2*3/7*2/3 = 1/7

Example **1.2.11**: When two dice are rolled, find the probability of getting a greater number on the first die than the one on the second, given that the sum should equal 8.

Solution:

Let the event of getting a greater number on the first die be G. There are 5 ways to get a sum of 8 when two dice are rolled = $\{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}$.

And there are two ways where the number on the first die is greater than the one on the second given that the sum should equal $8, G = \{(5,3), (6,2)\}$.

Therefore, P (Sum equals 8) = 5/36 and P(G) = 2/36.

```
P(G \mid \text{sum equals } 8) = P(G \text{ and sum equals } 8)/P(\text{ sum equals } 8)
```

Now,

= (2/36)/(5/36)= 2/5.

1.3 Random Variables

We have been examining with random experiments that can be described by finite sample spaces. We studied the assignment and computation of probabilities of events. In practice, one observes a function defined on the space of outcomes. Till now, we were concerned with such functions without defining the term *random variable*. Here we study the notion of a random variable and examine some of its properties.

The fundamental difference between a random variable and a real-valued function of a real variable is the associated notion of probability distribution. Nevertheless, our knowledge of advanced calculus or real analysis is the basic tool in the study of random variables and their probability distributions.

Definition 1.3.1. Let (Ω, S) be a sample space. A finite, single-valued function that maps Ω into \mathbb{R} is called a *random variable*(R.V) if the inverse images under X of all Borel sets in \mathbb{R} are events, that is, if

$$X^{-1}(B) = \{\omega : X(\omega) \in B\} \in S \text{ for all Borel sets } B.$$
(1.1)

Theorem 1.3.1. *X* is an R.V if and only if for each $x \in \mathbb{R}$,

$$\{\omega: X(\omega) \le x\} = \{X \le x\} \in S.$$
(1.2)

Note 2: The notion of probability does not enter into the definition of an R.V.

95665 35080

Remark 1.3.1. If *X* is an R.V, the sets $\{X = x\}$, $\{a < X \le b\}$, $\{X < x\}$, $\{a \le X < b\}$, $\{a \le X < b\}$ are all events. Moreover, we could have used any of these intervals to define an R.V.

Remark 1.3.2. One may ignore the technical conditions (1.1) and (1.2), and just remember random variables as mere real valued functions, but there exist real-valued functions defined on Ω that are not R.Vs but it is hard to encounter them in practical applications.

Example 1.3.1: For any set $A \subseteq \Omega$, define

$$I_A(\omega) = \begin{cases} 0, & \omega \notin A, \\ 1, & \omega \in A. \end{cases}$$

 $I_A(\omega)$ is called the *indicator function* of set A. I_A is an R.V if and only if $A \in S$.

Example 1.3.2: Let $\Omega = \{H, T\}$, and S be the class of all subsets of Ω . Define X by X(H) = 1 and X(T) = 0. Then

$$X^{-1}(-\infty, x] = \begin{cases} \emptyset, & x < 0, \\ \{T\}, & 0 \le x < 1, \\ \{H, T\}, & x \ge 1, \end{cases}$$

and we see that X is an R.V.

Example 1.3.3: Let $\Omega = \{HH, TT, HT, TH\}$ and S be the class of all subsets of Ω . Define X by

$$X(\omega) =$$
 number of $H's$ in ω .

Then X(HH) = 2, X(HT) = X(TH) = 1 and X(TT) = 0.

$$X^{-1}(-\infty, x] = \begin{cases} \emptyset, & x < 0\\ \{TT\}, & 0 \le x < 1,\\ \{TT, HT, TH\}, & 1 \le x < 2,\\ \Omega, & 2 \le x. \end{cases}$$

Thus X is an R.V.

Remark 1.3.3. Let (Ω, S) be a discrete sample space; that is, let Ω be a countable set of points and *S* be the class of all subsets of Ω . Then every numerical-valued function defined on (Ω, S) is an R.V.

Example 1.3.4: Let $\Omega = [0,1]$ and $S = \mathscr{B} \cap [0,1]$ be the σ -field of Borel sets on [0,1]. Define X on Ω by

$$X(\omega) = \omega, \quad \omega \in [0,1].$$

Clearly, X is an R.V. Any Borel set of Ω is an event.

1.3.1 Types of Random Variables

A random variable can be either discrete or continuous. Discrete random variables take on a countable number of distinct values. Consider an experiment where a coin is tossed three times. If *X* represents the number of times that the coin comes up heads, then *X* is a discrete random variable that can only have the values 0, 1, 2, 3 (from no heads in three successive coin tosses to all heads). No other value is possible for *X*.

Continuous random variables can represent any value within a specified range or interval and can take on an infinite number of possible values. An example of a continuous random variable would be an experiment that involves measuring the amount of rainfall in a city over a year or the average height of a random group of 25 people.

Drawing on the latter, if Y represents the random variable for the average height of a random group of 25 people, you will find that the resulting outcome is a continuous figure since height may be 5 ft or 5.01 ft or 5.0001 ft. Clearly, there is an infinite number of possible values for height.

A random variable has a probability distribution that represents the likelihood that any of the possible values would occur. Let's say that the random variable, Z, is the number on the top face of a die when it is rolled once. The possible values for Z will thus be 1, 2, 3, 4, 5, and 6. The probability of each of these values is 1/6 as they are all equally likely to be the value of Z.

For instance, the probability of getting a 3, or P(Z = 3), when a die is thrown is 1/6, and so is the probability of having a 4 or a 2 or any other number on all six faces of a die. Note that the sum of all probabilities is 1.

இன்றைய TRB பயிற்சியாளரே நாளைய அரசு பள்ளி ஆசிரியரே!

Teacher's Care Academy கடந்த 14 ஆண்டுகளாக TRB தேர்வுகளுக்கான சிறப்பு பயிற்சியை வழங்கி வருகிறது. இதுவரை 10,000-க்கும் மேற்பட்ட ஆசிரியர்களை அரசு கேலைகளில் வெற்றிகரமாக நியமிக்க உதவியதில் நாங்கள் பெருமிதம் கொள்கிறோம். எங்கள் நிறுவனத்தில் அனைத்து TRB தேர்வுகளுக்கும் விரிவான பயிற்சிகள் உள்ளன, அவை:

- PGTRB
- UGTRB
- SGT
- POLYTECHNIC TRB
- **BEO**
- TET Paper I & II
- College TRB
- Special Teachers

கூடுதலாக, தலிழ்நாடு அரசு இப்போது அனைத்து அரசு பணிக்கான தேர்வாணையங்களுக்கு (TRB, TNPSC, MRB, TNUSRB) தலிழ் மொழி கடோய தகுதி தேர்வு (Tamil Compulsory Exam) முதற்கட தேர்வாக அறிவித்துள்ளது தேற்காக தலிழ் மொழி கடாய தகுதி தேர்வு என்ற புத்தகத்தை பிரத்தியேகமாக உங்கள் Teacher's Care Academy வெளியிடீடுள்ளது. திந்த புத்தகம் அமெசானிலும் கிடைக்கிறது ஆனால் எங்களை தேரடியாக தொடர்பு கொண்டு வாங்கும் போது உங்களுக்கு கூடுதல் தள்ளுபடி கிடைக்கும்

PGTRB

PGTRB தேர்விற்கு நாங்கள் அனைத்து மொழி பாடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறோம் அதாவது

- 📥 Tamil
- 🖊 English
- Mathematics
- **4** Physics
- Chemistry
- 🖊 Botany
- 📥 Zoology
- 🖊 Economics
- Commerce
- 🖊 Computer Science
- 🖊 History

பெற்கண்ட அனைத்து படப்பிரிவுகளுக்கான Study Material-களுடன் Psychology, Tamil Eligibility Book, Question Bank மற்றும் General Knowldge Material-களும் வழங்கப்படும்.

TET (Teachers Eligibility Test)

TET கேநீர்விற்கு நம் Teachers Care Academy-யில் Paper I மற்றும் Paper II என இரண்டு தாள்களுக்கும் பிரத்தியேகமாக பயிற்சிகளை வழங்குகிறோம்

இதற்கு தமிழ்நாடு அரசால் வழங்கப்படீடுள்ள பள்ளி பாட புத்தகத்தில் இருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குகிறோம்

மேலும் Psychology-க்கு TRB-ஆல்வழங்கப்பட்டுள்ள பாடத்திட்டத்தை பின்பற்றி பல்கவறு Reference Book-லிருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குக்றோம்

UGTRB

TET தேர்வில் வெற்றி பெற்ற ஆசிரியர்களுக்கு நடத்தப்படும் UGTRB போடி தேர்வுக்காகஅனைத்து மொழி பாடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறோம் அதாவது

- ∔ Tamil
- \rm 📥 English
- **4** Mathematics
- **4** Physics
- 4 Chemistry
- 📥 Botany
- 📥 Zoology
- \rm History
- 4 Geography

<u>SGTRB</u>

TET தேர்வில் வெற்றி பெற்ற ஆசிரியர்களுக்கு நடத்தப்படும் SGTRB பொடீடி தேர்வுக்காக தமிழ்நாடு அரசால் வழங்கப்படீடுள்ள பள்ளி பாட புத்தகத்தில் இருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குகிறோம்

BEO

BEO தேர்வுக்காக TRB-ஆல் பாடத்திடீடம் வெளியிடப்படீடுள்ளது அந்த பாடத்திடீடத்தின் அடிப்படையில் அனைத்து பாடத்திற்கும் உங்கள் Teachers Care Academy அலகு (Unit-Wise) வாரியாக Study Material-களை வழங்குகிறது.

POLYTECHNIC TRB

Polytechnic தேநீவிற்காக உங்கள் Teachers Care Academy பின்வரும் மொழி பாடத்திற்கு பயிற்சிகளை வழங்கி வருகிறது. அதாவது,

- 🔸 CIVIL
- 🜲 EEE
- 📥 ECE
- 🔶 CSE
- 🖊 Mechanical
- 📥 English
- 📥 Mathematics
- 📥 Physics
- 📥 Chemistry

College TRB

தமிழ்நாடீடில் அரசு கல்லூரிகளில் காலியாக உள்ள உதவி பேராசிரியர் பணிக்கு TRB வெகு விரைவில் போடிடித் தேர்வை நடத்த இருக்கிறது

அந்த தேர்வுக்காக நம் Teachers Care Academy-யில் பின்வரும் மொழி பாடத் திடீடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறது

- 📥 Tamil
- 📥 English
- Mathematics
- 🖊 Physics
- Chemistry
- 📥 Botany
- 🖊 Zoology
- 📥 Economics
- **4** Commerce
- Computer Science
- 📥 History
- 📥 Geography

Special Teachers

TRB-ஆல்நடத்தப்படும் கிறப்பாகிறியர் தெர்வுக்காக நம் Teachers Care Academy-யில் பின்வரும் பாடத்திட்டத்திற்கு பிரத்தியேகமாக பயிற்கிகள் வழங்கப்பட்டு வருகிறது. அதாவது,

- 📥 Sewing
- \rm 🕹 Drawing
- 📥 Music
- 🖊 PET



