

UNIT-I **INORGANIC CHEMISTRY-1**

Your Success is Our Goal.

SERVICES AVAILABLE FOR PG TRB EXAM

- 🔶 Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- **Online Recorded Video Classes**
- Online Test
- Question Bank
- Regular Classes

tcaexamguide 🔰

Teacher's Care Academy 下

www.tcaexamguide.com

tcaexamguide@gmail.com M

CHEMISTRY

INORGANIC CHEMISTRY

PG TRB (2025-2026)

UNIT - 1

FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

 \leq

INDEX

 \geq

 \geq

S.N.	TOPICS	P.N.
1.1.	Chemical Periodicity: Modern Periodic Law.	1
	Multiple Choice Questions - 1	13
1.2.	Periodicity in properties.	15
	Multiple Choice Questions – 2	15
1.3.	The trend in the atomic and ionic radii, ionization potential and electron affinity along the period.	17
	Multiple Choice Questions – 3	26
1.4.	Effective nuclear charge.	27
	Multiple Choice Questions – 4	35
1.5.	Slater rules and its uses.	36
	Multiple Choice Questions – 5	37
2.1.	Structure and Bonding in Homo – and Hetero-Nuclear Molecules, including Shapes of Molecules.	38
	Multiple Choice Questions – 6	43
2.2.	(VSEPR Theory): Linear combination of AOs in hybridization, Stereochemistry of the hybrid orbitals.	44
	Multiple Choice Questions – 7	76
2.3.	Calculation of s & p characters of equivalence and non-equivalence of hybrid orbitals.	77
	Multiple Choice Questions – 8	79
3.1.	MO Theory.	81
3.2.	MO diagram for the homo-nuclear diatomic molecules,	82
3.3.	Heteronuclear diatomic molecules and triatomic molecules.	83
	Multiple Choice Questions – 9	90

3

3

4.1.	Concepts of Acids and Bases: HSAB Concept – Theory, Classification, Characteristics of Hard and Soft Species – Symbiosis.	93
	Multiple Choice Questions – 10	94
4.2.	Bronsted-Lowry concept – conjugate acid-base theory	95
	Multiple Choice Questions – 11	99
	Multiple Choice Questions – 12	100
4.3.	Relative strength of acids and bases	101
4.4.	Applications.	103
	Multiple Choice Questions – 13	112
4.5.	Lewis concept-characteristic features of the Lewis theory.	112
	Multiple Choice Questions – 14	122
5.1.	Non-Aqueous Solvents: Classification of solvents - Characteristics of a Solvent/ Ionizing Solvent.	124
	Multiple Choice Questions – 15	142
5.2.	Advantages and disadvantages of the following non-aqueous solvents: NH ₃ , HF, HCN, acetic acid, H ₂ SO ₄ .	147
	Multiple Choice Questions – 16	150
5.3.	Molten salts as solvents and ionic liquids.	151
	Multiple Choice Questions – 17	155
5.4.	Supercritical fluids in inorganic chemistry.	160
	Multiple Choice Questions – 18	162
6.1.	Nature of bonding of Main Group Elements: Alkali and Alkaline Earth Metal Complexes: Ligands – Alkyl Amines, Alkoxides, b- diketone and Crown Ethers.	164
	Multiple Choice Questions – 19	166
6.2.	Electron rich and electron deficient compound of main group elements.	168
	Multiple Choice Questions - 20	170

M

1	
I	\leq
2	

6.3.	Allotropes of Carbon.	172
	Multiple Choice Questions - 21	181
7.1.	Transition Elements and Coordination Compounds: Structure, Bonding Theories, Spectral and Magnetic Properties, Reaction Mechanisms.	182
7.2.	Transition Elements – General group trends, Stability of various oxidation states.	184
	Multiple Choice Questions – 22	186
7.3.	Difference between the first, second and third transition series.	188
	Multiple Choice Questions – 23	189
7.4.	Types of transitions, selection rules for electronic transitions, ground states.	190
	Multiple Choice Questions – 24	191
7.5.	Correlation diagrams, Orgel and Tanabe Sugano diagrams.	193
	Multiple Choice Questions – 25	197
8.1.	Coordination Compounds: Crystal field theory – Splitting of d orbitals under Different Geometries – CFSE – Spectrochemical Series	199
	Multiple Choice Questions – 26	199
	Multiple Choice Questions – 27	207
8.2.	Jahn Teller distortion – Limitations of CFT	208
	Multiple Choice Questions – 28	216
	Multiple Choice Questions – 29	219
8.3.	MO theory – Sigma and pi-bonding in Complexes.	220
	Multiple Choice Questions – 30	224
9.1.	Inner transition elements: Spectral, magnetic, redox properties	226
	Multiple Choice Questions – 31	230

 \leq

M

Z

9.2.	Its applications.	237
	Multiple Choice Questions - 32	239
9.3.	Important Multiple-Choice Questions	244

REFERENCES

- 1. J.D. Lee, Concise Inorganic Chemistry, Chapman & Hall, New York, USA, 1994. 2. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bockmann, Advanced Inorganic chemistry, John Wiley & Sons, New Jersey, USA, 1999. 3. W. U. Malik, G.D. Tuli, R.D. Madan, Selected Topics in Inorganic Chemistry, S. Chand Publishers, New Delhi, India, 2014. 4. B. R. Puri, L.R. Sharma, K.C. Kalia, Principals of Inorganic Chemistry: Principles of Structure and Reactivity, HarperCollins College Publishers, New York, USA, 1993. 5. J.E. Huheery, E. A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity HarperCollins College Publishers, New York, USSA, 1993. 6. Sharpe, A. G., Housecroft, C. E. (2018). Inorganic Chemistry. United Kingdom: Pearson. 7. Atkins, P., Overton, T. (2010). Shriver and Atkins' Inorganic Chemistry. United Kingdom: OUP Oxford. 3. Puri, B., Sharma, L. R., & Kalia, K.C., (2008). Principles of Inorganic Chemistry. Vishal Publishing Company. 8. Satya Prakash et al. Advanced Inorganic Chemistry - Volume I. (2000). India: S. Chand Limited. 9. Google references. 10. CSIR- NET chemistry books by upkar
 - CHER'S CARE ACTOR CHER'S CARE ACTOR CARE

TEACHER'S CARE ACADEMY, KANCHIPURAM

(TRB, TNPSC, TET, NET, SLET COACHING CENTER)

HEAD OFFICE NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

PG TRB CHEMISTRY

UNIT 1 - INORGANIC CHEMISTRY

SYLLABUS

Chemical Periodicity: Modern periodic law – Periodicity in properties, the trend in the atomic and ionic radii, ionization potential and electron affinity along the period. Effective nuclear charge – Slater rules and its uses.

Structure and bonding in homo – and hetero-nuclear molecules, including shapes of molecules. (VSEPR Theory): Linear combination of AOs in hybridization, Stereochemistry of the hybrid orbitals, Calculation of s & p characters of equivalence and non-equivalence of hybrid orbitals.

MO theory: MO diagram for the homo-nuclear diatomic molecules, heteronuclear diatomic molecules and triatomic molecules.

Concepts of acids and bases: HSAB concept – theory, classification, characteristics of hard and soft species – symbiosis. Bronsted-Lowry concept – conjugate acid-base theory – relative strength of acids and bases, applications. Lewis concept-characteristic features of the Lewis theory.

Non-Aqueous Solvents: Classification of solvents –characteristics of a solvent/ ionizing solvent. Advantages and disadvantages of the following non-aqueous solvents: NH₃, HF, HCN, acetic acid, H₂SO₄. Molten salts as solvents and ionic liquids, supercritical fluids in inorganic chemistry.

Nature of bonding of Main group elements: Alkali and alkaline earth metal complexes: ligands – alkyl amines, alkoxides, b-diketone and crown ethers. Electron rich and electron deficient compound of main group elements. Allotropes of carbon.

Transition elements and coordination compounds: Structure, bonding theories, spectral and magnetic properties, reaction mechanisms. Transition Elements – General group trends, Stability of various oxidation states. Difference between the first, second and third transition series. Types of transitions, selection rules for electronic transitions, ground states, correlation diagrams, Orgel and Tanabe Sugano diagrams.

Coordination compounds: Crystal field theory – splitting of d orbitals under different geometries – CFSE – Spectrochemical series – Jahn Teller distortion – Limitations of CFT – **MO theory** – sigma and pi-bonding in complexes.

Inner transition elements: Spectral, magnetic, redox properties and Its applications

	5 16	=(wolken wolk	14.000 Fill 2890 18.000	**		ALCO 25 MAG 24 MAG	10 10	Se Se	anic selecture	101.01.00	8	b Te	w or ere or	1 84	Po	min pointin		IC LV other Interroture	 8.E	tuin tuin	100 100	M Md
	*		cortion at	000, 12,012 14,008	23	2	THOM THOMAS THOMAS	32	Ge	emanium an	12 62016	8.	Sn	and it is the	80	Pb P	lead the	2012 20	H H	15	Minima at	26 10 10	ES BS minimum
	13			PO.806. VO.8211 P2	23	A	20.00	15	Ga	gallum p	68.123	\$.	=	unpu	18	F	toline and	100 101 201 200 301	E N I	82	dyponium	102.50	Cf Cf
ement	2							8	z	arc	12082.830	8	8	The second		PH	lanne	1000	CC 112	8ţ	in the second	00951	Sectore and
the Ele							=	29	3	capper	\$1 NeV(3)	47	Ag	MMR1	20	Au	pad	180 K	Rg	30	multiple	152,250	Sec. Se
ole of							10	28	z	nickel	10100	*	Pd	crack	38	đ	platinum	THACK	DS demolotion	81	andras	10.00	Am
dic Tak	æ							27	3	tento	101101	41	ž	mpot	12	-	Intime	17.05	Mt	8	munu	150.0021	Pu
Period			-				9	8	å	S.	IDNAM NO	\$	R	Langer L	18	oso	Minim	102201	Hs	5 A	promotion		Np
UPAC							r	25	Mn	ranginese	04830	4	2	Nutretum	35	Re	renium	18.27	101 Hanne	8 N	andmin	HTHI.	
								24	ັ	overview	01.000	4	Ŷ	maybderum or of	14	3	ussburg	10180	Sg	88	presodymum	HOH	Pa Polacitetan
		Jan .	5	1			0	23	>	multipener.	NON	4	q	and	2	Ta	tantahan	tion.	00 therein	80	5	14012	s€ n
	York	aberic nun	anic	stendard stores			*	8	F	stantan	47.867		Z	ENDINE IN	22	Ŧ	hafraum	118.462)	R	5	Intherun	120.51	AC AC
		_					•	ħ	Sc	scandum	41104	R :	~	and a	57.71		In common		89-103 waterste				OF
_	2	-	performance of	93122	22	BW	THE N. MOLING	20	ca	caldum	(B)(U)(B)	38	2	and	95	Ba	pana	12120	Ra		D	a a	UNION ED CHEA
+ - I	10001 10001	•	- Mar	10.900, 6.907)	=	Na	866 22	19	¥	potession	20.098	5	R0	undelura	5	Cs	cosiun	Line in	5 L	A.		7	D APPU

1.1. CHEMICAL PERIODICITY

For noise and updates to this table, see www.lapac.org. This version is dated 28 November 2016. Copyright © 2016 ILPAC, the international Union of Puee and Applied Chemistry.

95665 35080

- Dmitri Ivanovich Mendeleev (1834 1907), Russian chemist is introduced the periodic properties.
- Mendeleev's name has been immortalized by naming the element with atomic number 101, as Mendelevium. This name was proposed by American scientist Glenn T. Seaborg, t.
- Mendeleev's Periodic Law was, therefore, accordingly modified. This is known as the Modern Periodic Law and can be stated as: The physical and chemical properties of the elements are periodic functions of their atomic numbers.

 Long form of the periodic Table of the Elements with their atomic numbers and ground state outer electronic configurations. The groups are numbered 1-18 in accordance with the 1984 IUPAC recommendations. This notation replaces the old numbering scheme of IA-VIIA, VIII, IB-VIIB and 0 for the elements.

Modern Periodic Law

Introduction to Atom Models

Let us recall the history of the development of atomic models from the previous classes. We know that all things are made of matter. The basic unit that makes up all matter is atom. The word 'atom' has been derived from the Greek word 'a-tomio' meaning nondivisible. Atom was considered as non-divisible until the discovery of subatomic particles such as electron, proton and neutron. J. J. Thomson's cathode ray experiment revealed that atoms consist of negatively charged particles called electrons. He proposed that atom is a positively charged sphere in which the electrons are embedded like the seeds in the watermelon.

a. Rutherford's Atom model

Later, Rutherford's α-ray scattering experiment results proved that Thomson's model was wrong. Rutherford bombarded a thin gold foil with a stream of fast moving α-particles. It was observed that

TCA

- (i) Most of the α -particles passed through the foil
- (ii) Some of them were deflected through a small angle and
- (iii) Very few α -particles were reflected back by 180° Figure.

Figure. 2.1 Rutherford's a-ray scattering experiment

Rutherford's α-ray scattering experiment Based on these observations, he proposed that in an atom there is a tiny positively charged nucleus and the electrons are moving around the nucleus with high speed. The theory of electromagnetic radiation states that a moving charged particle should continuously loose its energy in the form of radiation. Therefore, the moving electron in an atom should continuously loose its energy and finally collide with nucleus resulting in the collapse of the atom. However, this doesn't happen and the atoms are stable. Moreover, this model does not explain the distribution of electrons around the nucleus and their energies.

b. Bohr atom model:

- The work of Planck and Einstein showed that the energy of electromagnetic radiation is quantised in units of hv (where v is the frequency of radiation and h is Planck's constant 6.626 × 10-34 Js). Extending Planck's quantum hypothesis to the energies of atoms, Niels Bohr proposed a new atomic model for the hydrogen atom. This model is based on the following assumptions:
 - 1. The energies of electrons in an atom are quantised.
 - 2. The electron is revolving around the nucleus in a certain circular path of fixed energy called stationary orbit.
 - Electron can revolve only in those orbits in which the angular momentum (mvr) of the electron must be equal to an integral multiple of h/2π. i.e. mvr = nh/2π ------(2.1) where n = 1,2,3,...etc.

Periodic Law

- "The physical and chemical properties of elements are a periodic function of their atomic masses."
- On the basis of this law he arranged all the elements in order of increasing atomic mass and he found that after certain regular intervals repetition in properties occur.

A. Merits of Mendeleev's Table

- (i) First systematic classification of elements by forming a table. Mendeleev's periodic table has **8 groups** and **7 periods.**
- (ii) Correction of Atomic Masses of the elements was done.
- (iii) He left a certain gap in the periodic table for undiscovered elements and he predicted the properties of those elements correctly. For instance, what he called E_{ka}-Aluminium is now a days Gallium and what he called E_{ka}-Silicon is now a days Germanium.

B. Demerits of Mendeleev's Table

- (i) Anomalous position of Hydrogen. He failed to justify the position of Hydrogen because some properties of hydrogen were similar to alkali metals and some other properties were similar to halogens.
- (ii) **Cause of periodicity**: He failed to explain **why the repetition** in properties occur after certain regular intervals.
- (iii) He failed to accommodate Lanthanides & Actinides in the main body of the periodic table.
- (iv) Some pairs did not obey the rule of increasing atomic masses. For instance Tellurium with atomic number 52 had a mass of 127.60u but lodine with atomic number 53 had a mass of 126.90 which was less than that of Tellurium.
- (v) He failed to justify the **position of isotopes** in the periodic table.

Qn. No. 16, NET - 2017

Modern Periodic Law And Modern Periodic Table

 Moseley showed that bombarding a beam of high velocity electrons on a target metal resulted in generation of X – rays. The square root of the frequency √γ of these X- rays was found to be directly proportional to the atomic number (Z) of the target metal. This was be represented by the following expression.

$$\sqrt{\gamma} = a(Z - b)$$

Where Z is the atomic number of the target element and (a) and (b) are Moseley's constants. The results of this experiment led to the re-framing of the periodic law. The modern periodic law was hence propounded as, "The physical and chemical properties of elements are a periodic functions of their atomic numbers".

Long Form of the Modern Periodic Table:

1 1A							1	Bohr	's Ta	ble								18 8A
1 H	2 2A											1:	3 A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be	_	-	_	— Tra	ansiti	onal C	Group	s —			E	5	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5E	6 6 6	7 3 7	8	9 — 8	3-10) 1 ⁴	1 12 3 25	2 1 3 A	3	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 C	28 r M	5 26 n Fe	6 27 e C	7 28 D N	3 29 i C	a 30 u Zi) 3 1 G	1 a	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nt	42 M	2 43 0 To	3 44 C R	4 48 u R	5 40 n Po	6 47 d A	7 48 g C	3 4 d Ir	9 1	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57* La	72 Hf	73 Ta	1 74 1 W	1 7: / R	5 76 e O	6 77 s Ir	7 78 P	3 79 t A	9 80 u H) 8 g T	1 1	82 Pb	83 Bi	84 Pc	85 At	86 Rn
87 Fr	⁸⁸ Ra	^{89**} Ac	104 Rf	10 Dt	5 10 5 Se	6 10 3 B	7 10 n H	8 10 s M	9 11 t Uu	0 11 in Uu	1 11 IU Uu	2 b		114 Uuq				
	Lant	hanid	es*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	e	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Ac	tinide	S**	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	E	99 Es l	100 Fm	101 Md	102 No	103 Lr

Some Important Points about the Modern Periodic Table:

- a. It consists of **eighteen groups**. Each group consists of a number of elements having the **same outer electronic configuration**.
- b. The elements of **18th group** are called inert gases or noble gases.
- c. The elements of groups 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are called transition elements.
- d. Two series each of **14 elements** are placed at the bottom of the periodic table, known as **Lanthanides and Actinides** (Inner Transition Elements)
- e. There are 7 known periods (horizontal rows) in this table. Distribution of element in different periods are as below:

1 st Period		2
2 nd and 3 rd period		8
4 th and 5 th period		18
6 th period	32	
7 th period	Incom	plete

Atomic Size

- (i) Atomic Radius: It is the distance from the centre of the nucleus to the outer most shell containing electron. It is impossible to isolate the atom and determine its radius precisely because its radius on is affected by its association with its neighbourhood. On the basis of the bond formed between atoms we can estimate the radius of the atom with great precision. Some of the radii are mentioned here:
- (d) Ionic Radius: The Ionic radius may be defined as the effective distance from the centre of the nucleus of the ion upto which it exerts its influence on the electron cloud.

Atomic radii decrease along the period in periodic table. (Qn. No: 65, PGTRB- 2001) Ionization energy and atomic number are found in rare gases (Qn- 1,PGTRB, 2002-03)

(i) The radius of cation is always smaller than that of its parent atom due to higher effective nuclear charge after removal of electron.

e.g.,
$$Na_{1s^22s^22p^63s^1} \rightarrow Na_{1s^22s^22p^6} + e^-$$

Due to removal of a valence electron, the number of electrons decrease. Each electron now experiences greater nuclear pull. As a result, the size of cation is smaller than that of the parent atom.

The smallest ionic radius of potassium is 1.34 ${ m \AA}$ (Qn-57, TRB-2005-06)

(i) The radius of anion is always larger than that of its parent atom.

$$Cl_{1s^22s^22p^63s^23p^5} + e^- \to Cl_{1s^22s^22p^63s^23p^6}$$

- TCA
- (ii) An anion is formed by gain of electron, which increases the number of electrons in the same shell. The effective nuclear charge now decreases and each electron experiences reduced nuclear pull. Repulsions between valence electrons now cause the cloud to expand making the anion larger in size than the neutral atom.
- **Iso-electronic ions**: lons of different elements which have the same number of electrons but different magnitude of nuclear charge are called isoelectronic ions.
- Variation of size: The ionic radius of iso-electronic ions decreases with the increase in the magnitude of nuclear charge. e.g., among isoelectronic ions of the second period the order of radius should be $C_4 > N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$ and among those of the third period: $Si_4^- > P_3^- > S_2^- > Cl > K^+ > Ca^{2+}$
 - Qn. No. 16, June, NET 2016

- The Correct Order Of Decreasing Ionic Radius For The Isoelectronic Species (Qn. 2, Trb 2002-03)
 - The smallest ionic radius is (Qn.57, TRB 2005-06), (Qn.5, TRB 2002)
 - The nuclear charge increases, the ionic radius decreases.
- (iii) Factors affecting the Atomic Radii:
- a. Number of Shell: More the number of the shells filled with electrons, larger will be size.
- b. Nuclear Charge: Nuclear charge attracts the electrons toward itself and attempts to decrease the size. This is nuclear charge effect. Generally, across the period size decreases because with increase in atomic number effective nuclear charge increases. As electrons are filled in the same shell they contract towards the nucleus causing size to decrease. Down the group size generally increases, addition of an extra shell causes effective nuclear charge to decrease on the valence electron.
- c. The atomic radii of N, O and C are 70, 74 and 77 pm respectively while electronegativities are 3.0, 3.5 and 2.5 respectively. The N-O and C-O bond lengths are respectively : 139.5 pm, 142 pm. [PGTRB, Qn.No.6, 2019]
- d. **Screening Effect or Shielding Effect**: The inner layer of the electron act as shield between nucleus and valence electron. This is known as shielding effect or screening effect as discussed earlier. Effective screening therefore attempts to increase the size and ineffective screening causes a decrease in atomic radius.
- (iv) Periodicity in Atomic Radius
- a. In a Period: The number of orbit remains same on going from left to right in a period while effective nuclear charge increases. So, atomic radius decreases across the period.
- b. In a Group: The atomic radius increases on going down a group due to addition of an extra shell.

Ionization Energy (Enthalpy)

 It is the amount of energy required to remove the outer most electron from an isolated atom in gaseous state.

$$M(s) \xrightarrow{\Delta H_{\text{sublimation}}} M(g)$$
$$M(g) \xrightarrow{\Delta H_{\text{ionization}}} M^{+}(g) + e$$

- Neutral isolated gaseous atom is produced by firstly subliming the metal atom from its solid state. Further on, the energy needed to knock off the first outermost electron is called the first ionization enthalpy. As this is the energy required, so value of ionization enthalpy is always positive.
- The first ionization potential of calcium is greater than of potassium because

(Qn- 2, TRB-2003-04)

 Unit wise, ionization enthalpy is expressed in kJ/mole or kCal/mol, however for an atom if the energy unit is in terms of eV then ionization enthalpy can also be referred to as ionisation potential.

NET – 2015

June, NET – 2014 Part – B

- > The element with first ionization potential is (qn-56, TRB-2014-15)
- > Ionization potential of hydrogen is 13.6v (Qn-52, TRB-2004-05)
- > The molecules having lowest ionization potential is (Qn- 137, TRB-2012-13)

Successive Ionisation Energy

- a. **Ionisation Energy (First):** It is the amount of energy required to remove the outer most e from an atom in gaseous state.
- b. **Ionisation Energy (Second):** It is the amount of energy required to remove the 2nd efrom same atom in gaseous state.

Important Fact: I.E₂ > I.E₁

- Because 2nd electron has to be removed from a cation which has high effective nuclear charge and smaller size than the neutral atom.
- Ionisation energy generally increases across a period and decreases down the group. Successive ionization energies are always larger. There is no exception to this rule.

Electron Gain Enthalpy

- It is the enthalpy change when an electron is added to the gaseous neutral atom.
- Electron gain enthalpy provides a measure of the ease with which an atom adds an electron to form anion.

$$X(g) + e^- \rightarrow X^-(g); \Delta H = A_{eg}H$$
 ...(i)

 The negative of the enthalpy change for the process shown in equation is defined as electron affinity of the atom undergoing the change for formation of anion.

- Depending on the element, enthalpy change in process may be endothermic or exothermic. When electron is added to gaseous neutral atom that has a natural tendency to accept an electron then energy is released, electron gain enthalpy is negative and electron affinity is positive.
- When an electron is added to an element that does not have a natural tendency to accept an electron then energy will be absorbed electron gain enthalpy will be positive and electron affinity will be negative.

Electronegativity

- Electronegativity is a measure of the tendency of an element to attract bonded electron pair towards (itself) in a covalent bonded molecule.
- (i) Factors on which electronegativity depend:
- a. Atomic Size: Electronegativity is inversely proportional to the size. Small sized elements generally have higher electronegativity.
- b. Effective Nuclear Charge: Electronegativity is directly proportional to the effective nuclear charge. Elements such as fluorine have highest effective nuclear charge in the second period and hence have the highest electronegativity.
- c. Hybridization: More is the s-character in hybridization, higher will be electronegativity.
 The order of electronegativity among different hybridizations is: sp hybrid carbon
 >sp² hybrid carbon > sp³ hybrid carbon
- (ii) Electronegativity Scales:

Electronegativity =
$$\frac{I.E.+E.A.}{2}$$

- a. **Mulliken Scale:** According to Mulliken, Both ionization energy and electron affinity are taken in eV/atom.
- b. **Pauling Scale**: Linus Pauling developed a method for the calculation of relative electronegativity of element.
- c. Pauling's Formula: $|\chi_A \chi_B| = 0.208 \sqrt{\Delta E}$

Where, $\Delta E = \text{Bond energy of } (A-B) - \sqrt{B.E. \text{ of } A - A \times B.E. \text{ of } B - B}$

[Bond enthalpy is taken in kcal/mole]

d. Relation between Mulliken and Pauling Scale: The value of electronegativity for an element in Mulliken scale is 2.8 times higher than Pauling's value.

e. Allred Rochow's Electronegativity: Allred and Rochow defined electronegativity as the force exerted by the nucleus of an atom on its valence electrons:

Electronegativity =
$$0.744 + \frac{0.359 Z_{eff}}{r^2}$$

- > Here, Z_{eff} is effective nuclear charge and r is the radius of the atom.
- On the Pauling Scale: Fluorine is most electronegative element with an electronegativity value of 4.0 followed by oxygen with a value of 3.5.
- According to modern periodic law, the properties of elements are the periodic functions of their atomic numbers. In modern periodic table, the horizontal lines are periods and the vertical lines are groups.

The periodic table has total 7 periods and 18 groups. If elements are arranged in increasing order of their atomic numbers, there is repetition of properties after 2, 8, 18, and 32 elements. There are two elements in the first period, eight elements in each of the second and third periods, eighteen elements in each of fourth and fifth period, thirty two elements in the sixth period and only nineteen elements till now in the seventh period.

Periodic classification of elements:

The elements of the periodic table in which the last electron enters in s-subshell, are called s-block elements. It contains elements of group s₁ and s₂ and their general configuration is ns¹⁻², where n represents the outermost shell. The total number of s-block elements are 14. IA group elements are known as alkali metals whereas the elements of II A group are known Chemical periodicity as alkaline earth metals. Fr87 and Ra88 are radioactive elements, H and He are gaseous elements and Cs and Fr are liquid elements among the s-block elements.

(ii) p-block Elements:

The elements of the periodic table in which the last electron enters in p-subshell are called p-block elements. p-block contains elements groups 13, 14, 15, 16, 17 and 18 of the periodic table. The general configuration of p-block elements are ns2np1-6 (where n = 2 to 6). The total number of p-block elements in the periodic table is 30 (excluding He). Most of these elements are non-metals, some are metalloids and few others are heavy elements which exhibit metallic character.

(iii) d-block Elements:

The elements of the periodic table in which the last electron gets filled up the d-orbital called d-block elements. The general electronic configuration is (n-1)d₁₋₁₀, ns₁₋₂. The dblock contains elements of group 3 to 12 of the periodic table. In d-block elements, the electron get filled up in the d-orbital of penultimate shell, that is why, these elements are known as Transition elements. The total d-block elements in periodic table are 33. Out of all the d-block elements mercury is the only liquid elements.

(iv) f-block Elements:

The elements of the periodic table in which the last electron gets filled up in the f orbital are called f-block elements. There is 28 f-block elements in the periodic table. The elements from atomic number 58 to 71 are called lanthanides because they come after lanthanum (57). The elements from atomic number from 90 to 103 are called Actinides because they come after actinium (39). All the actinium elements are radioactive. The general electronic configuration of these elements is (n-2)f₁₋₁₄(n-1) d₀₋₁, ns₂. All the elements after atomic number 92 (i.e., U₉₂) are transuranic elements.

The Types of Elements:

- (i) Inert gases: The general electronic configuration of these elements is ns₂ np₆. These have filled s and p orbitals of the outermost shell. So, these elements are stable and rarely take part in a reaction. Helium is also inert gas but its electronic configuration is 1s2.
- (ii) Representative elements: s and p-block elements except inert gases are called representative elements. Outermost shell of these elements is incomplete.
- (iii) Transition elements: These elements have partially d-orbitals in neutral state or in any stable oxidation state. The outermost electronic configuration is similar to d-block elements, i.e., (n-1)d₁₋₁₀ns₁₋₂. Chemical periodicity
- (iv) Inner transition element: In these elements last three shells i.e, last, penultimate and prepenultimate shells are incomplete. These are related to III B i.e., group -3. Their outermost electronic configuration is similar to f-block elements i.e., (n-2)f 1-14, (n-1)s₂ ,(n-1)p₆, (n-1)d₀₋₁ns₂.

MULTIPLE CHOICE QUESTIONS - 1

1. The atom having the valence-shell configuration 4s² 4p⁵ would be in:

A) Group VIA and Period 5 B) G

B) Group IVB and Period 4

- C) Group VIB and Period 7
- D) Group VIIA and Period 4

14

- E) Group VIIB and Period 4
- 2. Select the term best describing the series of elements: Mn, Fe, Co, Ni, Cu.
 - A) d-transition metals B) representative elements
 - C) metalloids D) alkaline earth metals
 - E) halogens
- 3. Which element has the largest atomic radius?
 - A) Li B) Na C) Rb D) F E) I
- **4.** Which of the following terms accurately describes the energy associated with the process?

	Li(g)	$\rightarrow Li^{+}(g) + e^{-}$				
	A) electron affir	nity	B) bir	nding energy		
	C) ionization er	nergy	D) ele	ectronegativity	,	TCA
	E) none of thes	е				
5.	The species the represented by	hat contains 24 the symbol:	protons,	26 neutrons	and 22	electrons would be
	A) ⁵⁰ V ³⁺	B) ²⁶ Cr ²⁺		C) ⁵⁰ Cr ²⁺	D) ⁵⁰ Mn ²⁺
	E) none of thes	e				
6.	Which element	has the lowest fir	rst ionizat	ion energy?		
	A) He	B) Ne	C) Ar		D) Kr	E) Xe
7.	Which element	has the highest	first ioniz	ation energy?	(Note: th	nis is an exception to
	the general trer	nd - see notes- yo	u may be	responsible for	or this.)	
	A) Be	B) B	C) C		D) N	E) O
8.	Which of these	isoelectronic spec	cies has t	he smallest ra	adius?	
	A) Br	B) Sr ²⁺	C) Rb) ⁺	D) Se ²⁻	
	E) They are all	the same size bec	cause the	ey have the sa	me numb	er of electrons.
9.	Which of the fo bond?	llowing elements	has the g	greatest attrac	tion for el	ectrons in a covalent
	A) Ge	B) As	C) Se)	D) Br	E) Bi

- **10.** Which statement is **wrong**?
 - A) The atomic weight of carbon is about 12.
 - B) The most stable ion of lithium is Li⁺.

C) A phosphorus atom is larger than an antimony atom.

D) The radius of a sodium atom is larger than that of a sodium cation.

E) Oxygen has a less negative electron affinity than fluorine.

11. All of the following properties of the alkaline earth metals increase going down the group **except**

	A) atomic radius	S	B) first	ionization en	ergy	C) ionic radius
	D) atomic mass	;		E) atomic vol	ume	
12.	Which of the fol	lowing is an io	nic hyd	ride?		
	A) PH ₃	B) H ₂ S		C) HI	D) KH	E) CH4
13.	Which of the fol	lowing is the n	nost ba	sic oxide?		
	A) N ₂ O ₃	B) N ₂ O ₅		C) P4O6	D) P4O10	E) Bi ₂ O ₅

1.2. PERIODICITY IN PROPERTIES

 Periodicity refers to trends or recurring variations in element properties with increasing atomic number. The properties of elements are periodic functions of their atomic numbers. If elements are arranged in increasing order of their atomic number, there is repetition of properties of elements with similar properties after certain regular intervals is known as periodicity. The periodic repetition of properties is due to the recurrence of similar valence shell configurations after regular intervals.

Example of some periodic properties of atoms:

- (i) melting and boiling point (ii) density
- (iii) atomic radii and ionic radii (iv) ionization potential
- (v) electron affinity (vi) electronegativity etc.

Aperiodicity: Not periodic; not occurring at regular intervals.

MULTIPLE CHOICE QUESTIONS - 2

- 1. Which statement is false? A sigma molecular orbital
 - A) may result from overlap of p atomic orbitals perpendicular to the molecular axis (side-on).

UNIT-2 **INORGANIC CHEMISTRY-2**

Your Success is Our Goal ...

SERVICES AVAILABLE FOR PG TRB EXAM

- 🔷 Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- **Online Recorded Video Classes**
- Online Test
- Question Bank
- Regular Classes

tcaexamguide 🍃

Teacher's Care Academy 🔼

www.tcaexamguide.com

tcaexamguide@gmail.com M

CHEMISTRY

INORGANIC CHEMISTRY

PG TRB (2025-2026)

UNIT - 2

FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

 \leq

INDEX

 \geq

 \geq

S.N.	TOPICS	P.N.
2.1.	ORGANOMETALLIC COMPOUNDS	1
	Multiple Choice Questions - 1	10
	2.1.1. Synthesis	12
	Multiple Choice Questions – 2	15
	2.1.2. Structure of Bonding and Important Types of Reactions of Organometallic Compounds	17
	Multiple Choice Questions - 3	19
	2.1.3. Oxidative Addition, Reductive Elimination.	22
	Multiple Choice Questions – 4	23
	2.1.4. Catalysis – Hydrogenation	25
	Multiple Choice Questions – 5	28
	2.1.5. Hydroformylation	30
	Multiple Choice Questions – 6	34
	2.1.6. Monsanto and Wacker Processes	36
	Multiple Choice Questions – 7	40
	2.1.7. Alkene Polymerization.	42
	Multiple Choice Questions – 8	44
2.2.	CAGES AND CLUSTERS: CHEMISTRY AND MOLECULARITY OF METAL CLUSTERS	47
	Multiple Choice Questions – 9	54
	2.2.1. Binuclear and Trinuclear Metal Clusters	56
	Multiple Choice Questions – 10	62
	2.2.2. metal Carbonyl	65
	Multiple Choice Questions – 11	74
	2.2.3. Halide Type Clusters	77
	Multiple Choice Questions – 12	85
	2.2.4. Borazines	88
	Multiple Choice Questions – 13	96

3

3

	2.2.5. Phosphazenes.	98
	Multiple Choice Questions – 14	112
2.3.	BIOINORGANIC CHEMISTRY: STRUCTURES AND BIOLOGICAL IMPORTANCE	113
	2.3.1. Porphyrin Ring System	113
	Multiple Choice Questions – 15	118
	2.3.2. Metalloporphyrin	120
	Multiple Choice Questions – 16	124
	2.3.3. Haemoglobin	126
	Multiple Choice Questions – 17	134
	2.3.4. Myoglobin	135
	Multiple Choice Questions – 18	144
	2.3.5. Chlorophyll	146
	Multiple Choice Questions – 19	148
	2.3.6. Iron	150
	Multiple Choice Questions – 20	153
	2.3.7. Sulphur	155
	Multiple Choice Questions – 21	157
	2.3.8. Proteins	159
	Multiple Choice Questions – 22	162
	2.3.9. Metalloenzymes	164
	Multiple Choice Questions – 23	166
	2.3.10. Photosynthesis – Photosystem-I and Photosystem-II	168
	Multiple Choice Questions – 24	172
	2.3.11. Metal storage and Transport – Fe, Cu and Zn Storage and Transport	174
	Multiple Choice Questions – 25	177
2.4.	NUCLEAR CHEMISTRY: NUCLEAR FISSION AND FUSION REACTIONS	180

M

3

L3

	Multiple Choice Questions – 26	183
	2.4.1. Radio-Analytical Techniques and Activation Analysis	188
	Multiple Choice Questions – 27	195
	2.4.2. Decay Modes	198
	Multiple Choice Questions – 28	213
	2.4.3. Types of Nuclear Reaction	216
	Multiple Choice Questions – 29	227
	2.4.4. Threshold Energy	230
	Multiple Choice Questions – 30	236
	2.4.5. Energy Barrier	239
	Multiple Choice Questions – 31	240
	2.4.6. Q-Value, Nuclear Cross Section, Photonuclear Reaction	244
	Multiple Choice Questions – 32	248
	Multiple Choice Questions – 33	252
	Multiple Choice Questions – 34	256
	2.4.7. Nuclear Fission, Spallation, Fragmentation and Fusion	257
	Multiple Choice Questions – 35	257
	2.4.8. Fission as a Chain Reaction – Nuclear Fuels	261
	Multiple Choice Questions – 36	261
	2.4.9. Fertile and Fissile Isotopes, Radiation Hazards	264
	Multiple Choice Questions – 37	26
	2.5.10. Nuclear Reactors in India.	271
	Multiple Choice Questions – 38	277
	Important Multiple-Choice Questions	278
L		

2

3

 \geq

 \geq

REFERENCES

 \leq

1. J.D. Lee, Concise Inorganic Chemistry, Chapman & Hall.
2. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bockmann, Advanced Inorganic chemistry, John Wiley & Sons.
3. W. U. Malik, G.D. Tuli, R.D. Madan, Selected Topics in Inorganic Chemistry.
4. B. R. Puri, L.R. Sharma, K.C. Kalia, <i>Principals of Inorganic Chemistry</i> : <i>Principles of Structure and Reactivity</i> .
5. J.E. Huheery, E. A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity.
6. Sharpe, A. G., Housecroft, C. E. (2018): Inorganic Chemistry.
7. Atkins, P., Overton, T. (2010). Shriver and Atkins' Inorganic Chemistry; Puri. B., Sharma, L. R., & Kalia, K.C., (2008). Principles of Inorganic Chemistry.
8. Satya Prakash et al. Advanced Inorganic Chemistry - Volume I. (2000).
9. Text Book of Coordination Chemistry, R. K. Sharma
10. Concise Coordination Chemistry by R. Gopalan
I . 11. Essential of Nuclear Chemistry by H J Arnikar
12. Google references.

TEACHER'S CARE ACADEMY, KANCHIPURAM

(TRB, TNPSC, TET, NET, SLET COACHING CENTER)

<u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

PG TRB CHEMISTRY

UNIT 2 - INORGANIC CHEMISTRY

SYLLABUS

ORGANOMETALLIC COMPOUNDS:

Synthesis, Structure of Bonding and Important Types of Reactions of Organometallic Compounds – Oxidative Addition, Reductive Elimination. Catalysis – Hydrogenation, Hydroformylation, Monsanto and Wacker Processes, Alkene Polymerization.

CAGES AND CLUSTERS:

Chemistry and Molecularity of Metal Clusters such as Binuclear and Trinuclear Metal Clusters, Metal Carbonyl, Halide Type Clusters, Borazines and Phosphazenes.

BIOINORGANIC CHEMISTRY:

Structures and Biological Importance of Porphyrin Ring System, Metalloporphyrin, Haemoglobin, Myoglobin and CHLOROPHYLL. IRON-SULPHUR Proteins, Metalloenzymes, Photosynthesis – Photosystem-I and Photosystem-II. Metal Storage and Transport – Fe, Cu and Zn Storage and Transport.

NUCLEAR CHEMISTRY:

Nuclear Fission and Fusion Reactions, Radio-Analytical Techniques and Activation Analysis. Decay Modes, Types of Nuclear Reaction – Threshold Energy, Energy Barrier, Q-Value, Nuclear Cross Section, Photonuclear Reaction, Nuclear Fission, Spallation, Fragmentation and Fusion. Fission as a Chain Reaction – Nuclear Fuels: Fertile and Fissile Isotopes, Radiation Hazards

- Nuclear Reactors in India.

 All transition elements exhibit a characteristic property of complex ion formation. The compounds containing complex ions are called coordination compounds. The branch of chemistry in which coordination compounds are studied that is called coordination chemistry.

(1) Double Salts and Co-Ordination Compounds:

When solutions of two or more stable compounds are mixed in stoichiometric (simple molecular) proportions new crystalline compounds called molecular or addition compounds are formed. These are of two types, (1) Double salts, (2) Co-ordination or Complex compounds (1) Double salts : Addition compounds, stable in solid state. Dissociate into ions in aqueous solution as such give test for each constituent ion.

Examples:

Double Salt	Responds test for the ions
Carnalite: $KCl \cdot MgCl_2 \cdot 6H_2O$	K^+, Mg^{2+}, Cl^-
Potash alum: $K_2SO_4 \cdot Al_2(SO_4)_3 24H_2O$	K^+, Al^{3+}, SO_4^{2-}

(2) Co-ordination or Complex compounds:

 Addition compound, stable in solid state. Retain their identity even in solution. Central metal ion form dative or coordinate bond with the species surrounding it (ligands).

Examples:

Complex compound	Cation	Anion
$\left[Cu(NH_3)_4\right]SO_4$	$\left[Cu(NH_3)_4\right]^{+2}$	SO_{4}^{2-}
$K_2[PtF_6]$	$2K^+$	$\left[PtF_{6}\right]^{2-}$
$\left[Co(NH_3)_6\right]\left[Cr(CN_3)_6\right]$	$\left[Co(CN_3)_6 \right]^{2+}$	$\left[Cr(CN)_{6}\right]^{3-}$

(3) Terminology of co-ordination compounds

(1) Central metal atom or ion: A complex ion contains a metal atom or ion known as the central metal atom or ion. It is sometimes also called a nuclear atom.

- (2) Complex ion: It is an electrically charged radical which is formed by the combination of a simple cation with one or more neutral molecules or simple anions or in some cases positive groups also.
- (3) Ligands: Neutral molecules or ions that attach to central metal ion are called ligands. The donor atom associated with the ligands supplies lone pair of electrons to the central metal atom (forming dative bond) may be one or two more. Monodentate (one donor atom), bidentate (two donor atom), tridentate (three donor atom) etc.

Formula	Name	Formula	Name
X^{-}	Halo	O_2^{2-}	Peroxo
$: OH^{-}$	Hydroxo	CH_3COO^-	Acetato
CN^-	Cyano	NO_3^-	Nitrato
O^{2-}	Охо	$S_2 O_3^{2-}$	Thiosulphato
NH_2^-	Amido	NO_2^-	Nitrito
S^{2-}	Sulphido	CO_{3}^{2-}	Carbonato
CNS ⁻	Thiocyanato	SO_{4}^{2-}	Sulphato

Monodentate Ligands (with one donor site)

Table: 20.2 Neutral Ligands

Formula	Name	Formula	Name
CO	Carbonyl	: <i>NH</i> ₃	Amminato
PH ₃	Phosphine	H_2O	Aqua
NO	Nitrosyl	C_5H_5N :	Pyridine (py)

Table: 20.3 Cationic Ligand (Positive)

Formula	Name	Formula	Name
NO_2^+	Nitronium	NO^+	Nitrosonium
$H_2NNH_3^+$	Hydrazinium		

Polydentate Ligands (with two or more donor site)

Formula	Name	Formula	Name
H ₂ NCH ₂ CH ₂ NH ₂	Ethylenediamine (en)	$Me - C = NO^{-}$ $Me - C = NOH$	Dimethylglyoximeto(dmg)
$\begin{array}{c} O & O \\ \bar{O} & \parallel & \parallel \\ \bar{O} - C - C - O^{-} \end{array}$	Oxalato (ox)	$NH_2 - CH_2 - COO^-$	Glycinate ion (gly)

Table 20.4 Bidentate (Two donor sites)

Table 20.5

	Formula	Name
Tridentate	$H_2\ddot{N}(CH_2)_2 - \ddot{N}H - (CH_2)_2\ddot{N}H_2$	Diethylenetriaminediami-
		ne(dien)
Tetradebtate	$H_2\ddot{N}(CH_2)_2 - \ddot{N}H - (CH_2)_2\ddot{N}H(CH_2)_2\ddot{N}H_2$	Triethylenetetra-mine (trien)
Hexadentate	-: 00CH ₂ C	Ethylenediamine tetraacetic
	-: 00CH ₂ C	acid (EDTA) ⁴

Chelating Ligand:

When polydentate ligands bind to the central metal ion they form a ring called chelate and the ligand is referred as chelating ligand.

Ambidentate Ligands:

- A ligand which possesses two donor atom but in forming complex it utilizes only one atom depending upon the condition and type of complex.
- NO₂ (Nitro), ONO (nitrito), CN (cyano), NC (isocyano), SCN (thiocyanide), NCS (isothiocyanide)

TCA

π -Acid Ligand:

> Ligands which are capable of accepting an appreciable amount of π - e^- density from the metal atom into emptying π or π *orbital or their own called π - acceptor of π - acid ligands eg. CO.

(4) Co-Ordination Sphere:

 Ligand with central metal ion is kept in square bracket [] retains its identity in the same form is called co-ordination sphere (non-ionisable)

(5) Co-Ordination Number:

 Number of monodentate ligands attached to central atom/ion are called coordination number of the central metal atom/ion.

(6) Ionisation Sphere:

• The part present outside of the square bracket is called ionization sphere (ionisable).

IUPAC Nomenclature of complex compounds In order to name complex compounds certain rules have been framed by IUPAC. These are as follows

- (1) The positive part of a coordination compound is named first and is followed by the name of negative part.
- (2) The ligands are named first followed by the central metal. The prefixes di-, tri-, tetra-, etc., are used to indicate the number of each kind of ligand present. The prefixes bis (two ligands), tris (three ligands), etc., are used when the ligands includes a number e.g., dipyridyl, bis (ethylenediamine).
- (4) Naming of ligands : The different types of ligands i.e. neutral, negative or positive are named differently in a complex compound. When a complex species has negative charge, the name of the central metal ends in – ate. For some elements, the ion name is based on the Latin name of the metal (for example, argentate for silver). Some such Latin names used (with the suffix – ate) are given below.

(OR) Additional notes

Organometallic Compounds

 Organometallic compounds are those "compounds in which central metal atoms are directly bonded with the carbon atoms of the hydrocarbon radical or molecule" or An Organometallic compound is defined as one that possesses a metal-carbon bond.

- The term "Organometallic" generally denotes compound in which organic groups are directly linked to the metal through at least one carbon atom.
- The bonding is ionic or covalent or delocalised between organic groups and a metal atom. Simple organometallic compounds are one which a metal-carbon bond which is typically similar with respect to the derivative of associated constituent.

Further divided in to a) Symmetrical:

> Example: [Hg (C₂H₅)₂] Diethyl mercury

b) Unsymmetrical: Example: CH_3 -Hg- C_2H_5 Ethyl methyl mercury A mixed organometallic compounds are those in which a metal atom bonded with more than one identity of organic or inorganic constituent. Example: C_2H_5 -Mg-Br Ethyl magnesium bromide.

Classification of Organometallic Compounds:

 On this basis of nature of metal- carbon bond organometallic compounds are classified in to " lonic bonded organometallic compounds: The organometallic compounds of alkali, alkaline earth metals, Lanthanides and Actinides are predominantly form ionic compounds. These are generally colourless compounds extremely reactive, non-volatile solids and insoluble in organic solvents. Examples: Ph₃C⁻Na⁺, Cp₂Ca, Cs⁺Me⁻, Na⁺Cp⁻.

[PGTRB - 2007, Qn.No. 48]

Covalent Bonded Organometallic Compounds:

1) σ - bonded organometallic compounds: These are the compounds in which carbon atom of the organic ligand is bonded to the metal by a 2 electron, 2 centered (2e-2c) covalent bond. Generally formed by most of the elements with values of electronegativity are higher than 1.

TCA

Examples: Ni (CO) 4, Fe (CO) 5

2) π - bonded organometallic compounds: These are alkene, alkyne or some other carbon group has a system of electron in π -orbitals overlap of these π - orbitals with vacant orbitals of the metal atom gives rise to arrangement in which the metal atom is bonded to several carbon atom instead of to one. Examples: [($\eta_5 - C_5H_5$)₂Fe)], K [PtCl₃ ($\eta_2 - C_2H_2$)] (Zeise's salt) "[PGTRB 2014-2015, Qn. No. 8]

Multicentre Bonded Organometallic Compounds:

- The compounds in which a loosely bonded electron deficient species exist with the coordination of metal like Li, Be, Al...etc Examples: MeLi or (CH₃)₄Li₄, Al₂Me₆.
- Classification of ligands based on hapticity: In hapto classification organic ligands are classified according to "number of carbon atoms within a bonding distance of metal atom

or the no. of carbon atoms through which an organic ligand is attached to central metal atom" is known as "hapticity" of the ligand. This is represented by the symbol " η n" appearing before the symbol of the ligand. Where, n- hapticity of the ligand.

Monohepto Ligands (η1):

- Organic ligands attached to the metal through one carbon.
 - ➢ Ex: -CH₃, -C₂H₅
- Dihepto ligands (η2): Example: CH2=CH2, K[PtCl3(η2 -C2H2)] (Zeise's salt)
- Trihepto ligands (η₃): Example: Allylic radical CH₂=CH-CH₂⁻
- Tetrahepto ligands (η₄): Example: Butadiene CH₂=CH-CH= CH₂
- Pentahepto ligands (η₅): Example: Metallocene M (η₅ -C₅H₅)₂
- Hexahepto ligands (η₆): Example: Dibenzene ChromiumCr (η₆ -C₆H₆)

Structure of Methyl Lithium:

- CH₃Li in nonpolar solvents consists of tetrahedron of Li atoms with each face ridged by a methyl group.
- The bonding in CH₃Li consists of a set of localized molecular orbitals. The symmetric combination of three Li 2s orbitals on each face of the Li⁴ tetrahedron and one sp³ hybrid orbital from CH₃ gives an orbital that can accommodate a pair of electron to form a 4c-2e bond.
- The lower energy of the C orbital compared with the Li orbitals indicates that the bonding pair of electrons will be associated primarily with the CH₃ group, thus supporting the carbanionic character of the molecule.
- Some analysis has indicated that about 90% ionic characters for the Li-CH₃ interaction.

Structure of Zeise's salt: K [PtCl₃ (η_2 -CH₂=CH₂)]:- Potassiumtrichloro (ethene) platinate (II)

1) Zeise's salt was the first organometallic compond to be isolated in pure form (1825 by William Zeise). It is a square planar complex with 16 electrons.

Zeise's salt is represented as (a) H₃PtCl₆ (b) [PtCl₄] ^{2–} (c) [ZnCl₄] ^{2–} (d) [PtCl₃($\eta_2 - C_2H_4$)][–] Ans. (d) : Zeise's salt is potassium trichloro (ethylene) platinate (II)hydrate, K[PtCl₃(C₂H₄)].H₂O. The anion of this yellow co-ordination complex contains an η_2 – ethylene ligand. K[PtCl₃(C₂H₄)].H₂OK \leftrightarrow K+ + [PtCl₃(C₂H₄)][–] Zeise's Salt**[GATE EXAM 2007, 2012]**

2) The π -acid ligand donates electron density into a metal d-orbital. The metal donates electrons back from a filled d-orbital into the empty π^* antibonding orbital of the ligand (hence the description π -acid ligand). Both of these effects tend to reduce the C-C bond order, leading to an elongated C-C distance.

3) The interaction can cause carbon atoms to "rehybridize" from sp² towards sp³, which is indicated by the bending of the hydrogen atoms on the ethylene back away from the metal.

4) The Pt-Cl bond trans to the ethylene group is significantly longer than the cis- Pt-Cl bonds.

5) The C-C distance, 1.375 Å, is slightly longer than the value found in free ethylene (1.337 Å), indicating some $d\pi$ -p π * back-bonding from the platinum atom to C₂H₄.

6) Back-bonding is also indicated by a bending of the four hydrogen atoms away from the Pt atom.

Structure of ferrocene [Fe (η_5 -C₅H₅)₂]:- bis (η_5 -cyclopentadienyl) iron (II)

- 1. Ferrocene is known as a "sandwich" compound.
- 2. It occurs as highly stable orange crystals with a melting point of 174° C.
- 3. In solid state at low temperature, the rings are staggered.
- 4. The rotational barrier is very small, with free rotation of the rings.
- 5. Extreamly low temperature that is Below 110 K, the Cp rings are ordered and eclipsed.
- 6. Terms of bonding, the iron center in ferrocene is usually assigned to the +2 oxidation state.
- 7. Each cyclopentadienyl (Cp) ring is then allocated a single negative charge, bringing the number of π -electrons on each ring to six, and thus making them aromatic.

8. These twelve electrons (six from each ring) are then shared with the metal via covalent bonding. When combined with the six d-electrons on Fe²⁺, the complex attains an 18-electron configuration.

The number of metal – metal bonds in [(C₅H₅) Fe (CO)₂]₂ is (a) zero (b) one (c) two (d) three

Ans. (b)

Ligands No of e^- donated

 C_5H_5 2

CO

So, Total valence electron in the compound

2

$$\mathsf{TVE} = 8 \times 2 + (5 \times 2) + (4 \times 2)$$

= 16 + 10 + 8

95665 35080

No. of metal-metal bond = $\frac{(n \times 18 - A)}{2}$

Where n = 2

 $M - M bond = \frac{2 \times 18 - 34}{2} = 1$

Compound
[GATE EXAM 2008]

Structurally nickellocene is similar to ferrocene. Nickellocene attains stability due to the formation of (a) a monocation (b) a dication (c) a monoanion (d) a dianion Ans. (b) : Nickelocene is the chemical compound with the formula () 5 5 5 2 Ni C H . η – Also known as bis (Cyclopentadienyl) nickel or NiCp2. Nickelocene is type of metallocene in which metal ion is sandwitched between two parallel cyclopentadienyl rings. The Ni center can be considered to have a 2+ charge and Cp rings are each considered to be cyclopentadienyl anion (Cp–), related to cyclopentadiene by deprotonation (this structure is similar to ferrocene).

So, nickalocene attains stability due to formation of dications. According molecular orbital diagram ferrocene contains 18 valence electrons in bonding and non-bonding MOs and ABMOs are vacant because only BMOs donated by both cyclopenta dienyl ring (6 x 2 = 12e⁻) in BMOs 6 electrons are supplied by Fe²⁺ cation, filled in nonbonding e₂g and a1g orbitals. The a₁g is HOMO and e1g is LUMO in ferrocene.[GATE EXAM 2010]

[GATE EXAM 2017]

- The correct molecular representation of W(Cp)₂(CO)₂ is (Cp = cyclopentadienyl) (a) [W(η 1 Cp) (η 3 Cp) (CO)₂] (b) [W(η 1 Cp) (η 5 Cp) (CO)₂] (c) [W(η 3 Cp) (η 5 Cp) (CO)₂] (d) [W(η 5 Cp)₂ (CO)₂]
 - Ans. (c): The complex [W(η 3 –Cp) (η 5 –Cp) (CO)₂] is correct representation, as it follows 18e⁻ rule. Total valence electron (TVE) = Number of electrons in valence shell of metal + Total no. of electrons donated by ligands. TVE = electron in valence shell of 'W' + electron donated by 'η ³ –Cp' + electrons donated by 'η ₅ –Cp' + electrons donated by CO lingads. TVE = 6 + 3 + 5 (2x2) = 18 electron

Multiple Choice Questions - 1

1. Which of the following is considered an organometallic compound?

- A) Sodium chloride B) Ethyl magnesium bromide
- C) Ammonium sulfate D) Acetic acid

2. What is the central metal in ferrocene $(C_5H_5C_5H_5C_5H_52Fe)$?

A) Copper B) Iron C) Chromium D) Nickel

3. Which of the following ligands is commonly found in organometallic compounds?

- A) Chloride $(Cl Cl^-Cl^-)$ B) Carbonyl (COCOCO)
- C) Hydroxide $(OH OH^-OH^-)$ D) Ammonia $(NH_3NH_3NH_3)$

4. What type of bonding is observed in organometallic compounds involving carbon monoxide (CO)?

- A) Ionic bonding B) Covalent bonding only
- C) Coordinate and back-donation bonding D) Hydrogen bonding

5. Which of the following is an application of organometallic compounds?

- A) Catalysis in polymerization reactions B) As fertilizers in agriculture
- C) As antiseptics in medicine D) As oxidizing agents

6. Which of the following statements is correct about Grignard reagents (R-MgXR-MgX)?

- A) They are stable in water.
- B) They are used in nucleophilic addition reactions.
- C) They do not react with carbon dioxide.
- D) They are not organometallic compounds.

7. Which of the following is not an organometallic compound?

- A) Tetraethyl lead $(Pb(C_2H_5)4Pb(C_2H_5)_4Pb(C_2H_5)_4)$
- B) Sodium methoxide (*CH*₃*ONaCH*₃*ONaCH*₃*ONa*)
- C) Methyl lithium $(CH_3LiCH_3LiCH_3Li)$
- D) Dimethyl zinc $(Zn(CH_3)_2 Zn(CH_3)_2 Zn(CH_3)_2)$

8. The 18-electron rule in organometallic chemistry is analogous to which rule in organic chemistry?

A) Octet rule

C) Aufbau principle

D) VSEPR theory

B) Hund's rule

9. Which metal is commonly used in organometallic catalysts for olefin polymerization?

Δ) Δluminum	B) Palladium	C) Titanium	D) Sodium
	D i anaulum	O_{f} internation	D O

10. In which type of reaction are organometallic compounds such as Wilkinson's catalyst commonly used?

A) Oxidation B) Reduction C) Hydrogenation D) Hydrolysis

2.1.1. Synthesis

- Simple transition metal carbonyls are made by various methods, the important ones are
 - (a) Direct reaction
 - (b) Reductive carbonylation
 - (c) Photolysis and thermolysis

(a) Direct Reaction

First of all tetracarbonyl nickel [Ni(CO)₄] and pentacarbonyl iron [Fe(CO)₅] were discovered in 1888.
 The synthesis of [Ni(CO)₄] is inducstrially important because the reaction is reversible and this is the basis of the Mond's process for purification of metallic nickel.

$$Ni + 4CO \xrightarrow{25^{\circ}C} Ni(CO)_{4} \xrightarrow{Distill} Ni + 4CO$$
Impure $Ni + 4CO$

- The simplest metal carbonyls are the neutral binary Mx (CO)y compounds, these may be mononulear (x=1) or polynuclear (x>1). The majority of metal carbonyls are ow melting point solids that can be sublimated in vacuo. A small number of the compounds are volatile liquids.
- The other mononuclear metal carbonyls are prepared by direct reaction of metal with gaseous CO at appropriate temperatures and pressures.
 - > Example

$$Fe + 5Co \xrightarrow{200^{\circ}C} Fe(CO)_{5}, Mo + 6CO \xrightarrow{200^{\circ}C} Mo(CO)$$

(b) Reductive Carbonylation

- Mononuclear and polynuclear metal caarbonyls are synthesized by a process known as reductive carbonylation in which a transition metal in a high oxidation state is reduced to zero oxidation state in presence of CO gas.
- Often these reactions are performed at very high pressures in steel bombs

- To reduce the possibility of an accident the bombs are usually operated in explosion proof rooms, located on the top floor of a chemistry building.
- Some typical metal carbonyls synthesis employing reductive carbonylation are shown as

$$CrCl_3 + Al + 6CO \xrightarrow{AlCl_3}{C_6H_6} Cr(CO)_9 + AlCl_3$$

• When halide is not present, CO can serve as the reducing agent

$$\operatorname{Re}_2 O_7 + 17CO \rightarrow \operatorname{Re}_2 (CO)_{10} + 7CO_2$$

$$2CoCO_3 + 2H_2 + 8CO \xrightarrow{150^{\circ}C} 250 \text{ atm} \rightarrow Co_2 (CO)_8 + 2CO_2 + 2H_2O$$

(c) Photolysis and Thermolysis

- In addition to direct reaction and reductive carbonylation methods, carbonyl compounds can also be synthesized by a route called occurs photolysis. Photochemical bond cleavage occurs during synthesis
 - > Eg. Synthesis of iron near carbonyl.

$$2Fe(CO)_{5} \xrightarrow{hv} Fe_{2}(CO)_{9} + CO$$
$$2Na[V(CO)_{6}] + 2HCl \xrightarrow{hv} 2V(CO)_{6} + 2NaCl + H_{2}$$

18 Electron Rule:

- 18 electron rule of metal carbonyls
- The 18-electron rule is used primarily for predicting and rationalizing formulae for stable metal complexes, especially organometallic compounds.
- The rule is based on the fact that the valence shells of transition metals consist of nine valence orbitals (one s orbital, three p orbitals and five d orbitals), which collectively can accommodate 18 electrons as either bonding or nonbonding electron pairs.
- This means that, the combination of these nine atomic orbitals with ligand orbitals creates nine molecular orbitals that are either metalligand bonding or non-bonding.
- When a metal complex has 18 valence electrons, it has achieved the same electron configuration as the noble gas in the period.
- The rule and its exceptions are similar to the application of the octet rule to main group elements. 18 electron rule of metal carbonyls
- This rule applies primarily to organometallic compounds, and the 18 electrons come from the 9 available orbitals in d orbital elements (1 s orbital, 3 p orbitals, and 5 d orbitals).

TEACHER'S CARE PUBLICATION 38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

PG TRB G.O No. 219 New Syllabus **CHEMISTRY**

UNIT-4 PHYSICAL CHEMISTRY-2

Your Success is Our Goal ...

SERVICES AVAILABLE FOR PG TRB EXAM

- Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- Online Recorded Video Classes
- 🔶 Online Test
- Question Bank
- Regular Classes

tcaexamguide 🔰

Teacher's Care Academy 🕟

2025-2026

www.tcaexamguide.com

tcaexamguide@gmail.com M

CHEMISTRY

INORGANIC CHEMISTRY

PG TRB (2025-2026)

UNIT - 4

FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118) INDEX

 \geq

 \geq

4.1. CLASSICAL THERMODYNAMICS	2
4.1.1. Partial Molal Quantities (or) Thermodynamics of Open Systems	2
4.1.2. Partial molar Free energy: Concept of Chemical Potential	3
4.1.3. Gibbs – Duhem Equation	4
4.1.4. Variation of Chemical Potential with Temperature	4
4.1.5. Variation of Chemical Potential with Pressure	5
4.1.6. Determination of Partial Molar Properties	5
Objective Questions – 1	9
4.1.7. Fugacity	10
4.1.7.1 Concept of Fugacity	
4.1.7.2. Fugacity at Low Pressures	
4.1.7.3. Determination of Fugacity of a Gas	
4.1.8. Thermodynamics of IDEAL and Non-Ideal Mixtures	14
4.1.8.1. Ideal Mixtures	
4.1.8.2. Non-Ideal Mixtures	
4.1.8.3. Excess Functions	
4.1.8.4. Thermodynamic Functions for Mixtures	
4.1.8.5. Applications in Real Systems	
4.1.9. Concept of Activity	18
4.1.9.1 Activity of a Substance	
4.1.9.2. Activity Co-Efficient	
4.1.9.3. Reference States or Standard States	
4.1.9.4. States State for a Gas	
4.1.9.5. Standard State for a Liquid	
4.1.9.6. Standard State for a Solid	
4.1.9.7. Mean activity Co-Efficients of Electrolytes	
4.1.9.8. Mean ionic Activity Co-Efficient's of Electrolyte	
Objectives Questions – 2	21
4.2. STATISTICAL THERMODYNAMICS	22
4.2.1. Concepts of Statistical Thermodynamics	22
4.2.2. Distinguishable and Non-Distinguishable Particles	24
4.2.3. Assemblies	27
4.2.4. Ensemble	27
4.2.4.1. Microcanonical Ensemble	

3

4.2.4.2. Canonical Ensemble	
4.2.4.3. Grand Canonical Ensemble	
4.2.4.4. Microstates and Macrostates	
4.2.4.5. Thermodynamic Probability	
4.2.4.6. Distributions of Particles	
4.2.4.7. Relationship between Entropy and Thermodynamic Probability	
4.2.4.8. Stirling Approximation	
4.2.5. Maxwell – Boltzmann statistics	37
4.2.6. Bose-Einstein statistics	40
4.2.7. Fermi-Dirac statistics	42
4.2.8. Comparison and Applications	43
4.2.8.1. Comparison of Various Statistics is as Follows	
4.2.8.2. Applications of Various Statistics	
4.2.9. Kinetic Theory of Gases	46
4.2.10. Partition Function	52
4.2.10.1. Significance of Partition Function	
4.2.10.2. The Translational Partition Function	
4.2.10.3. The Rotational Partition Function	
4.2.10.4. The Vibrational Partition Function	
4.2.10.5. The Electronic Partition Function	
4.2.10.6. The Nuclear Partition Function	
4.2.11. The Partition Function and Their Relation to Thermodynamic Properties	59
Objective Questions – 3	61
4.3. PHASE RULE	62
4.3.1. Phase	62
4.3.2. Degrees of Freedom	62
4.3.3. Components	63
4.3.4. One Component System	64
4.3.5 Two Component Systems	67
4.3.6. Reduced Phase Rule or Condensed Phase Rule	68
Objective Questions – 4	97
4.4. COLLOIDS AND SURFACES	98
4.4.1. Factors Affecting Stability	99
4.4.1.1. Forces Between Particles	

M

4.4.1.2. Zeta Potential	
4.4.1.3. Concentration of Colloidal Particles	
4.4.1.4. pH of the Medium	
4.4.1.5. Ionic Strength	
4.4.1.6. Temperature	
4.4.1.7. Solvent Quality	
4.4.2. Types of Colloidal Instability	100
4.4.3. Properties of Colloids	101
4.4.3.1. Colour	
4.4.3.2. Size	
4.4.3.3. Colloidal solutions are heterogeneous in nature having two distinct phases	
4.4.3.4. Filtrability	
4.4.3.5. Non-Setting nature	
4.4.3.6. Concentration and density	
4.4.3.7. Diffusability	
4.4.3.8. Colligative properties	
4.4.3.9. Shape of colloidal particles	
4.4.3.10. Optical Property	
4.4.3.11. Kinetic property	
4.4.3.12. Electrical Property	
4.4.3.12.1. Helmholtz Double Layer	
4.4.3.12.2. Electrophoresis:	
4.4.3.12.3. Electro osmosis	
4.4.4. Protection of Colloids and Gold Number	105
4.4.5. Absorption	107
4.4.5.1. Adsorption	
4.4.5.2. Adsorbent	
4.4.5.3. Adsorbate	
4.4.5.4. Sorption	
4.4.5.5. Desorption	
4.4.5.6. Adsorption of Gases on Solids	
4.4.6. Physical Adsorption	108
4.4.6.1. Chemical Adsorption	
4.4.7. Differences Between Phsisorption and Chemisorption	109
4.4.7.1. Characteristics of Adsorption	

 \geq

4.4.8. Adsorption Isotherm	110
4.4.8.1. Type of Adsorption Isotherm	
4.4.8.1.1. Type I Adsorption Isotherm	
4.4.8.1.2. Type II Adsorption Isotherm	
4.4.8.1.3. Type III Adsorption Isotherm	
4.4.8.1.4. Type IV Adsorption Isotherm	
4.4.8.1.5. Type V Adsorption Isotherm	
4.4.9. Freundlich Adsorption Isotherm	112
4.4.9.1. Verification of Freundlich Adsorption Isotherm	
4.4.10. Langmuir Adsorption Isotherm	114
4.4.10.1. Verification	
4.4.10.2. Limitations	
4.4.11. Determination of Surface Area of Adsorbent Using BET Equation	118
4.4.12. Catalysis	119
4.4.12.1. Types of Catalysis	
4.4.12.2. Characteristic of a Catalyst	
4.4.12.3. Kinetics Of Heterogeneous Catalysed Reaction	
4.4.12.3.1. Unimolecular Surface Reaction	
4.4.12.3.2. Limiting Cases of Equation (4)	
4.4.12.4. Bimolecular Surface Reaction	
4.4.12.5. Langmuir-Rideal Mechanism	
Objective Questions - 5	134
Problems and Solutions	135
More Problems and Solutions	144
MPORTANT MULTIPLE CHOICE QUESTIONS SET	184

 \leq

5

REFERENCES

1) Principles of Physical Chemistry, Puri, Sharma and Pathania.
2) Atkin's Physical Chemistry, W. H. Freeman and Company, 8th Edition
3) A Textbook of Physical Chemistry, Vol-2, 3, 5, K. L. Kapoor.
4) Chemical Thermodynamics, Classical, Statistical and Irreversible, J. Rajaram, J. C.
Kuriacose.
5) Statistical Thermodynamics, M. C. Gupta.
ل · · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · ـ ـ · · · ـ ـ · · · ـ ـ

 \leq

TEACHER'S CARE ACADEMY, KANCHIPURAM

(TRB, TNPSC, TET, NET, SLET COACHING CENTER)

<u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

PG TRB CHEMISTRY UNIT 4 - INORGANIC CHEMISTRY

SYLLABUS

Classical Thermodynamics

Partial Molar properties, chemical potential, Gibb's-Duhem equation. Determination of partial molar quantities, thermodynamics of real gases, fugacity-determination of fugacity by graphical and equation of states methods, dependence of temperature, pressure and composition, thermodynamics of ideal and non-ideal mixtures, Activity and acitivity coefficients.

Statistical Thermodynamics

Concepts of statistical thermodynamics, distinguishable and non-distinguishable particles, Assemblies, ensembles, canonical particles, Boltzmann distribution, Bose-Einstein, Fermi-Dirac statistics, comparison and application, kinetic theory of gases, partition function and their relation to thermodynamic quantities, calculation for model systems.

Phase Rule:

Phase, degrees of freedom, component, One component system, water system, triple point-two component systems, reduced phase rule-eutectic temperature-lead-silver system-congruent and incongruent melting point-Zn and Mg system – NaCl and water system – CST – phenol and water system. Henry's law – Raoult's law – Nernst distribution law – solvent extraction – steam distillation – fractional crystallisation – Park's process.

Colloids and Surfaces:

Stability and properties of colloids, gold number, types of adsorption, Freundlich's and Langmuir's isotherms and surface area, heterogeneous catalysis.

4.1. CLASSICAL THERMODYNAMICS

4.1.1. Partial Molal Quantities (or) Thermodynamics of Open Systems:

- The thermodynamic properties U, H, S, A and G are extensive properties because their values change with change in the mass of the system. In the derivative of the various thermodynamic equations described, the change of state was considered to be due to change in temperature and pressure only. A taint assumptions was made that the system under consideration was a closed system (i.e.,) there could be no change in the mass of the system. However, in the case of an open system containing two or more components, there can be change in the number of more of various components as well. In that case, an extensive property, say X must be a function not only of temperature and the pressure but also the number of moles of the various components present in the system.
- Let *T* and *P* be the temperature and pressure respectively, of a system. Let n₁, n₂, n₃,...,n be the respective numbers of moles of the constituents 1, 2, 3,,j. The property *X* must function of temperature, pressure and the number of moles of the various constituents i.e.,

$$X = f(T, P, n_1, n_2, n_3, ..., n_j)$$
(1)

Where $n_1 + n_2 + n_3 + ... + n_i$ = total number of moles = N

For a small change in temperature, pressure and the number of moles of the components the change in property *dx* will be given by the expression

$$dx = \left(\frac{\partial x}{\partial T}\right)_{P_1N} dT + \left(\frac{\partial x}{\partial P}\right)_{T_1N} + \left(\frac{\partial x}{\partial n_1}\right)_{T_1P_1n_2,\dots,n_i} d_{n_1} + \left(\frac{\partial x}{\partial n_2}\right)_{T_1P_1n_1n_3\dots n_i} dn_2 + \dots + \left(\frac{\partial x}{\partial n_i}\right)_{T_1P_1n_1,n_2} dn_i \dots$$
(2)

The quantity $\left(\frac{\partial x}{\partial n_i}\right)_{T_1P_1n_1n_2...,n_i} dn_i$ is called the partial molar property of the concerned

component. This is more often represented as $\overline{X_i}$.

Thus, for the ith component of a system

Partial molar internal energy =
$$\left(\frac{\partial u}{\partial n_i}\right)T_1P_1n_1, n_2, \dots = \overline{U_i}$$

TCA

Partial molar enthalpy = $\left(\frac{\partial H}{\partial n_i}\right)T_1P_1n_1, n_2, n_3... = \overline{H_i}$

Partial molar entropy =
$$\left(\frac{\partial S}{\partial n_i}\right)T, P, n_1, n_2, n_3... = \overline{S_i}$$

Partial molar volume = $\left(\frac{\partial V}{\partial n_i}\right)T, P, n_1, n_2, \dots = \overline{V_i}$

4.1.2. Partial molar Free energy: Concept of Chemical Potential

The partial molar free energy is designated as chemical potential and is represented as

$$\left(\frac{\partial G}{\partial n_i}\right)T, P, n_1, \dots, n_j = \overline{G_i} = \mu_i$$
(3)

- The chemical potential of a given substance is, evidently the change in free energy of the system that results on the addition of one mole of that particular substance at a constant temperature and pressure, to such a large quantity of the system that there is no appreciable change in the overall composition of the system (PGTRB 2001, 12-13; CSIR DEC-2013).
- Chemical potential is an intensive property (PGTRB 2002).
- For a small force energy change, equation (2) may be written as

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P_1N} dT + \left(\frac{\partial G}{\partial P}\right)_{T_1N} dp + \mu_1 d_{n_1} + \mu_2 dn_2 + \dots + \mu_j d_{n_j}$$
(4)

- Where μ₁, μ₂,... and μ_j are chemical properties of the components 1, 2, ... and j, respectively.
- If temperature and pressure remain constant then

$$\left(\partial G\right)_{T,P} = \mu_1 d_{n_1} + \mu_2 d_{n_2} + \dots + \mu_j d_{n_j}$$
(5)

If a system has a definite composition having n₁, n₂,...n_j moles of the constituents 1, 2, ...,
 j respectively, then on integrating equation (5) we have

$$(G)_{T_1P_1N} = n_1\mu_1 + n_2\mu_2 + \dots + n_2\mu_i$$
(6)

- From equation (6), chemical potential may be taken as the contribution per mole of each particular constituent of the mixture of the total free energy of the system under conditions of constant temperature and pressure.
- It readily follows that for a total of 1 mole of a pure substance *G* = μ (i.e.,) free energy is identical with chemical potential.

4.1.3. Gibbs – DuhemEquation

- Equation (6) shows that the free energy of a system, at constant temperature and pressure, can be expressed as a sum of nµ terms for the individual components of the system.
- From equation (6), the total differential of G is written as

$$dG = \mu_1 d_{n_1} + \mu_2 d \mu_1 + n_2 d \mu_2 \dots \mu_i d_{n_j} + n_i d \mu_j$$

= $(\mu_1 d_{n_1} + \mu_2 d_{n_2} + \dots + \mu_i dn_i) + (n_1 d u_1 + n_2 d u_2 + \dots + n_i d u_j)$ (7)

 But according to equation (5), the first term on right hand side of equation (7), is equal to dG, at constant temperature and pressure, for a system of a definite composition.

$$n_{1}du_{1} + n_{2}du_{2} + \dots + n_{i}du_{i} = 0$$
(or)
$$\sum n_{i}du_{i} = 0$$
(9)

This simple relationship is known as Gibbs-Duhem equation.(PGTRB-2001; 2022; CSIR JUN-2015))

4.1.4. Variation of Chemical Potential with Temperature:

 The variation of chemical potential of any constituent i of a system with temperature can be derived by differentiating equation (3), with respect to temperature and equation

$$\left(\frac{\partial G}{\partial T}\right)_{P,N} = -S \text{ with respect to } n_i \text{ . The results are:}$$
$$\frac{\partial^2 G}{\partial n_i \partial T} = \left(\frac{\partial \mu_i}{\partial T}\right)_{P,N} \tag{10}$$

$$\frac{\partial^2 G}{\partial i \partial n_i} = -\left(\frac{\partial S}{\partial \mu_i}\right) T, P, n_1, \dots, \overline{S_i}$$
(11)

- Where $\overline{S_i}$ by definition, is the partial molar entropy of the component i.
- It follows from equations (10) and (11), that

$$\left(\frac{\partial \boldsymbol{\mu}_i}{\partial \boldsymbol{T}}\right)_{\boldsymbol{P},\boldsymbol{N}} = -\overline{\boldsymbol{S}}_i \tag{12}$$

Equation (12) gives the variation of chemical potential (μ_i) of any constituent i of the system with temperature (PGTRB 2015).

4.1.5. Variation of Chemical Potential with Pressure:

 The variation of chemical potential of any constituent i of the system with pressure may be desired by differentiating equation (3) with respect to pressure and equation

$$\left(\frac{\partial G}{\partial P}\right)_{P,N} = V \text{ with respect to } n_i \text{ . The results are:}$$

$$\left(\frac{\partial^2 G}{\partial P \partial n_i}\right) = \left(\frac{\partial \mu_i}{\partial P}\right)_{T,N} \tag{13}$$
and
$$\left(\frac{\partial^2 G}{\partial n_i \partial P}\right) = -\left(\frac{\partial V}{\partial n_i}\right)T, P, n_1, \dots, n_j = \overline{V_1} \tag{14}$$
Where $\overline{V_i}$ by definition, is the partial molar volume of the component i.
It follows from equations (13) and (14), we get
$$\left(\frac{\partial^2 G}{\partial n_i \partial P}\right) = -\left(\frac{\partial \mu_i}{\partial P}\right)_{T,N} = -\overline{V_i} \tag{15}$$

Equation (15) gives the variation of chemical potential (μ_i) of any constituent of the system and pressure (PGTRB 2004, 2011-12).

4.1.6. Determination of Partial Molar Properties:

Experimental Determination of Partial Molar Volumes

A straight forward method for determining V_{1,pm} of component 1 in a binary solution of known composition is to measure volumes of solutions obtained by adding varying amount of component 1 in a fixed amount of component 2. A graph between volume of solution and amount of component 1 is plotted. The slope of the line at the given composition of the solution gives the partial molar volume of the component 1.

Method of Intercept

- A considerably more precise method for the determination of partial molar volumes (or in general any partial molar quantity) is the *method of intercepts*. The principle underlying this method is described below.
- Let V_{m,mix} be the volume of mixture containing a total of one mole of the two components,
 Obviously, it will be given as

$$V_{m,mix} = \frac{V}{n_1 + n_2} \tag{1}$$

 Where V₁ is the volume of the mixture containing the amounts n₁ and n₂ of components
 1 and 2, respectively. Since partial molar volume of component 1 is defined (∂V/∂n₁)_{∑,p,n₂}, (Written hereafter a (∂V/∂n₁)_{n₂}, since T and p remain constant during the experiment), it follows that

$$V_{1,pm} = \left(\frac{\partial V}{\partial n_1}\right)_{n_2} = \left(\frac{\partial (n_1 + n_2)V_{m,mix}}{\partial n_1}\right)_{n_2}$$
$$= V_{m,mix} + (n_1 + n_2)\left(\frac{\partial V_{m,mix}}{\partial n_1}\right)_{n_2}$$
(2)

• Since $x_1 + x_2 = 1$, the total molar volume $V_{m,mix}$ at a given temperature and pressure will depend only on one of the mole fraction terms. Writing it as

$$V_{m,mix} = f\left(x_2\right) \tag{3}$$

We get

$$dV_{m,mix} = \left(\frac{dV_{m,mix}}{dx_2}\right) dx_2 \tag{4}$$

• Division of the above equation by dn_1 , and restriction to constant n_2 gives

$$\left(\frac{\partial V_{m,mix}}{\partial n_1}\right)_{n_2} = \left(\frac{\partial V_{m,mix}}{\partial x_2}\right) \left(\frac{\partial x_2}{\partial n_1}\right)_{n_2}$$
(5)

- Now since $x_2 = \frac{n_2}{n_1 + n_2}$
- We have $\left(\frac{\partial x_2}{\partial n_1}\right)_{n_2} = -\frac{n_2}{(n_1 + n_2)^2} = -\frac{x_2}{(n_1 + n_2)}$ (6)
- Hence, Eq. (5) becomes

$$\left(\frac{\partial V_{m,mix}}{\partial n_1}\right)_{n_2} = \left(\frac{\partial V_{m,mix}}{\partial x_2}\right) \left(-\frac{x_2}{n_1 + n_2}\right)$$

Substituting the above equation in Eq. (2), we have

$$V_{1,pm} = V_{m,mix} - x_2 \left(\frac{\partial V_{m,mix}}{\partial x_2}\right) i.e., V_{m,mix} = V_{1,pm} + x_2 \left(\frac{\partial V_{m,mix}}{\partial x_2}\right)$$
(7)

A similar treatment for V_{2,pm} yields

$$V_{m,mix} = V_{2,pm} + x_1 \left(\frac{\partial V_{m,mix}}{dx_1}\right)$$
(8)

• Geometrical interpretation of Eq. (7) for (or 8) is straightforward. This represents the tangent line drawn to the plot of $V_{m,mix}$ versus x_2 (or $V_{m,mix}$ versus x_1) with intercept equal to $V_{1,pm}$ (or $V_{2,pm}$) and slope equal to $dV_{m,mix}/dx_1$). Both the plots of $V_{m,mix}$ versus x_2 and $V_{m,mix}$ versus x_1 represent a single plot as $x_1 + x_2$ is always equal to 1. This is illustrated in Fig 1 where the intercepts are $V_{1,pm}$ at $x_2 = 0$ (or $x_1 = 1$) and V_2 at $x_2 = 1$ (or $x_1 = 0$). In fact, Eq. (8) may be derived from figure 1. The slope of $V_{m,mix}$ versus x_2 at P is given by expression

$$\frac{dV_{m,mix}}{dx_2} = \frac{V_{2,pm} - V_{m,mix}}{1 - x_2}$$

On rearranging this expression, we get

$$V_{m,mix} = V_{2,pm} - (1 - x_2) \frac{dV_{m,mix}}{dx_2}$$

• Since $x_1 + x_2 = 1$, it follows that $dx_1 = -dx_2$. Hence, the above expression becomes

$$V_{m,mix} = V_{2,pm} + x_2 \frac{dV_{m,mix}}{dx_1}$$

• Since $x_1 + x_2 = 1$, it follows that $dx_1 = -dx_2$. Hence, the above expression becomes

$$V_{m,mix} = V_{2,pm} + x_1 \frac{dV_{m,mix}}{dx_1}$$

 Equations (7) and (8) are valid for any extensive property Y(say V, U, H.S.A and G) of the mixture. Hence, the equations may be generalized to

$$Y_{m,mix} = Y_{1,pm} + x_2 \left(\frac{dV_{m,mix}}{dx_2}\right)$$
$$Y_{m,mix} = Y_{2,pm} + x_1 \left(\frac{dV_{m,mix}}{dx_1}\right)$$

Figure 1: The method of intercepts to determine the partial molar volumes of components of a binary solution

Alternative Method:

In older literatures, partial molar volumes have been determined by plotting a graph between the reciprocal of the density of the solution versus the mass per cent of component 1 (or component 2), rather than V_{m,mix} versus x, equation (7) can be rewritten in terms of the reciprocal of density of the mixture (1/ρ_{mix}) and mass per cent of component 2 (w₂), we have

$$V_{m,mix} = \frac{x_1 M_1 + x_2 M_2}{\rho_{mix}} = \frac{M_1 + x_2 (M_2 - M_1)}{\rho_{mix}}$$
(9)

Therefore

or

$$\frac{dV_{m,mix}}{dx_2} = \frac{M_2 - M_1}{\rho_{mix}} + \left\{ M_1 + x_2 \left(M_2 - M_1 \right) \right\} \left(\frac{d\left(1/\rho_{mix} \right)}{dx_2} \right)$$
(10)

• The dx will be related to dw as shown below.

$$w_2 = \frac{m_2}{m_1 + m_2} \times 100 = \frac{n_2 M_2}{n_1 M_1 + n_2 M_2} \times 100 = \frac{x_2 M_2}{x_1 M_1 + x_2 M_2} \times 100$$

$$w_2 = \frac{x_2 M_2}{M_1 + x_2 (M_2 - M_1)} \times 100$$
(11)

Taking inverse of the above expression, we have

$$\frac{1}{w_2} = \frac{M_1}{x_2 M_2 \times 100} + \frac{M_2 - M_1}{M_2 \times 100}$$

Differentiating the above expression, we have

$$-\frac{1}{w_2^2}dw_2 = -\frac{M_1}{x_2^2M_2 \times 100}dx_2 \text{ or } dx_2 = \frac{x_2^2M_2 \times 100}{M_1w_2^2}(dw_2)$$

• Substituting dx_2 from the above expression in Eq. (10), we get

$$\frac{dV_{m,mix}}{dx_2} = \frac{M_2 - M_1}{\rho_{mix}} + \left\{M_1 + x_2\left(M_2 - M_1\right)\right\} \frac{M_1 w_2^2}{x_2^2 M_2 \times 100} \frac{d\left(1/\rho_{mix}\right)}{dw_2}$$

Making use of Eq. (11), we get

$$\frac{dV_{m,mix}}{dx_2} = \frac{M_2 - M_1}{\rho_{mix}} + \frac{x_2 M_2 \times 100}{w_2} \frac{M_1 w_2^2}{x_2^2 M_2 \times 100} \frac{d(1/\rho_{mix})}{dw_2}$$
$$= \frac{M_2 - M_1}{\rho_{mix}} + \frac{M_1 w_2}{x_2} \frac{d(1/\rho_{mix})}{dw_2}$$
(12)

Substituting Eqs. (12) and (9) in Eq. (7), we get

$$\frac{M_1 + x_2(M_2 - M_1)}{\rho_{mix}} = \frac{M_1}{\rho_{1,pm}} + x_2 \left[\frac{M_2 - M_1}{\rho_{mix}} + \frac{M_1 w_2}{x_2} \frac{d(1/\rho_{mix})}{dw_2}\right]$$

On simplifying, we get

$$\frac{1}{\rho_{mix}} = \frac{1}{\rho_{1,pm}} + w_2 \frac{d(1/\rho_{mix})}{dw_2}$$
(13)

Similarly, Eq. (8) will become

$$\frac{1}{\rho_{mix}} = \frac{1}{\rho_{2,pm}} + w_1 \frac{d(1/\rho_{mix})}{dw_1}$$
(14)

• Hence, a tangent to the curve $1/\rho_{mix}$ versus w_2 at any particular w_2 has an intercept on $1/\rho_{mix}$ axis of $1/\rho_{1,pm}$, whereas a tangent to the curve $1/\rho_{mix}$ versus w_2 at any particular w_1 has an intercept on $1/\rho_{mix}$ of $1/\rho_{2,pm}$, Both the curves can be represented by a single plot as $w_1 + w_2$ is always equal to 100. The partial molar volumes are obtained by multiplying the two intercepts with the respective molar masses.

Objective Questions - 1

- 1. The partial molar free energy is designated as _____.
 - (A) Gibbs Duhem equation (B) Free energy
 - (C) Chemical potential (D)All the above

2. Which of the following is the correct expression for the partial molar Gibb's free energy (*G_i*) of a component *i* in a mixture?

(A)
$$G_i = \frac{\partial G}{\partial n_i}$$
 (B) $G_i = \frac{\partial G}{\partial P}$ (C) $G_i = \frac{\partial G}{\partial T}$ (D) $G_i = \frac{\partial G}{\partial n_i}\Big|_{T,P}$

- 3. The partial molar enthalpy of a component is defined as:
 - (A) The heat required to change the temperature of the mixture by one degree.

(B) The enthalpy change of the system when an infinitesimal amount of component iii is added, keeping the temperature and pressure constant

(C) The heat released when one mole of a component is dissolved in the solvent

(D) The enthalpy change of the system when the pressure is changed by an infinitesimal amount

4. The Gibb's-Duhem equation is

(A)
$$\sum n_i d\mu_i = 0$$
 (B) $\sum \mu_i dn_i = 0$ (C) $n_i d\mu_i = 0$ (D) $\sum \mu_i = 0$

5. The correct expression for variation of chemical potential with temperature is

$$(A) \left(\frac{\partial \mu_{i}}{\partial T}\right)_{P,N} = \overline{S}_{i} \qquad (B) \left(\frac{\partial \mu_{i}}{\partial P}\right)_{T,N} = -\overline{S}_{i}$$
$$(C) \left(\frac{\partial \mu_{i}}{\partial T}\right)_{P,N} = -\overline{S}_{i} \qquad (D) \left(\frac{\partial \mu_{i}}{\partial T}\right) = -\overline{S}_{i}$$

6. The correct expression for variation of chemical potential with Pressure is

4.1.7. Fugacity

4.1.7.1. Concept of Fugacity:

- By using the free energy function, G Lewis introduced the concept of fugacity for representing the actual behaviour of real gases which is distinctly different from the behaviour of ideal gas(PGTRB 2003). The unit of fugacity is same as pressure (PGTRB 2004-05).
- Variation of free energy with pressure at constant temperature is given by equation

$$\left(\frac{\partial G}{\partial P}\right)_T = V \tag{1}$$

- This equation is applicable to all gases whether ideal or non-ideal
- If one mole of a gas is under consideration, then V refers to molar volume. For an ideal gas the above equation may be written as,

$$(dG)_{T} = \frac{RTdP}{P}$$
(2)
and for n moles as, $(dG)_{T} = \frac{nRTdp}{p}$

$$= \frac{nRTd}{(\ln p)}$$
(3)

Integrating of Eq. 167 yields

$$G = G_0 + nRT \ln P \tag{4}$$

- Where G^o, the integration constant is the free energy of n moles of the ideal gas at temperature T when the pressure P is unity
- Equation (4), gives the free energy of an ideal gas at temperature T and pressure P.
- Integration of Equation (3) between pressures P₁ and P₂, at constant temperature T, yields,

$$\Delta G = \int_{P_1}^{P_2} nRT \frac{dp}{p} - nRT \ln \frac{P_2}{P_1}$$
 (5)

The corresponding equation for 1 mole of the gas would be

$$\Delta G = Rn \ln \frac{P_2}{P_1} \tag{6}$$

- Equations (4) and (6) are not valid for real gases since V is not exactly equal to RT/P for real gases.
- In order to make these simple equations applicable to real gases, Lewis introduced a new function f, called fugacity function. It takes the place of P in Eq. (3) which, for real gases, may be expressed as

$$\left(dG\right)_{T} = nRTd\left(\ln f\right) \tag{7}$$

and equation (4) may be represented as

$$G = G^0 + nRT \ln f \tag{8}$$

- Where G⁰ is the free energy of n moles of a real gas when its, fugacity happens to be 1.Thus, fugacity is a sort of "factitious pressure" which is used in order to retain for real gases simple forms of equations which are applicable to ideal gases only. The escaping tendency of a substance from a given state is called fugacity (PGTRB 2011-12; CSIR DEC-2014; JUN 2017).
- Equation (8), gives the free energy of a real gas at temperature T and pressure P at which the fugacity can be taken as f.
- Equation (7), on integration between fugacities f₁ and f₂ at constant temperature T, yields

$$\Delta G = nRT \ln\left(\frac{f_2}{f_1}\right) \tag{9}$$

The corresponding equation for 1 mole of the gas would be

$$\Delta G = RT \ln\left(\frac{f_2}{f_1}\right) \tag{10}$$

Equations (9) and (10) are applicable to real gases.

4.1.7.2. Fugacity at Low Pressures:

 The ratio f/p, where p is the actual pressures approaches unity when P approaches zero since in that case a real gas approximates to ideal behaviour (PGTRB 2001). The fugacity function, may be defined as

$$\lim_{p \to 0} \frac{f}{p} = 1 \tag{11}$$

 Evidently, at low pressures, fugacity is equal to pressure. The two terms differ materially only at high pressures (PGTRB – 2015).

4.1.7.3. Determination of Fugacity of a Gas:

Equation (8), for one mole of a gas, may be put as

$$G = G^0 + RT \ln f$$

Differentiation of equation (12) with respect to pressure at constant temperature and constant number of moles of the various constituents (i.e.,) in a closed system, gives

(12)

$$\left(\frac{\partial G}{\partial P}\right)_{T} = RT\left(\frac{\partial (\ln f)}{\partial P}\right)$$
(13)

Since
$$\left(\frac{\partial G}{\partial P}\right)_T = V$$
 Equation (1)

It follows that,

$$\left(\frac{\partial(\ln f)}{\partial P}\right)_{T} = \frac{V}{RT}$$
(14)

Thus, at a definite temperature, equation (14) may written as

$$RTd(\ln f) = Vdp \tag{15}$$

- Since one mole of a gas is under consideration. V is the molar volume of the gas.
- Knowing that for an ideal gas, $V = \frac{RT}{P}$, the quantity α , defined as departure from ideal behavior at a given temperature, is given by

$$\alpha = \frac{RT}{P} - V \tag{16}$$

Multiplying by dpthrough out, we get

$$\alpha dp = RT\left(\frac{dp}{p}\right) - Vdp \tag{17}$$

Combining equations (15) and (16), we have

$$RTd\left(\ln f\right) = RT\frac{dp}{p} - \alpha dp$$
(or)

$$d(\ln f) = d(\ln p) - \alpha \frac{dp}{dT}$$
(18)

• Integrating equation (182) between pressures O and P_1 we have

$$\ln\frac{f}{p} = -\frac{1}{RT} \int_{0}^{p} d\left(dp\right) \tag{19}$$

 Now, α as given by equation (16), can be determined experimentally, at different pressures

Figure: Plot of $\alpha = \left(\frac{RT}{P} - V\right)$ versus P for the determination of fugacity of the gas

- These values of α are then plotted against correspond pressures, as shown figure. The area under the curve between pressure P = 0 and any given pressure P, yield the value of the integral $\int_{0}^{P} \alpha(dp)$, as illustrated in shaded portion in figure. Incorporating this value in equation (19), the fugacity f can be evaluated at a given pressure P of the gas.
- Sinceα, the departure from ideal behaviour can be both positive as well as negative, the area under the curve can be both positive as well as negative. Thus, the fugacity of the gas can be both less than or more than the pressure P.
- As is evident from figure the area and hence the value of $\int_{0}^{p} \alpha(dp)$ is positive at low

pressures and negative at very high pressures. Hence, in accordance with equation (19), fugacity f of the gas would be less than the pressure P at low pressures and more than the pressure P at high pressure.

 For hydrogen and Helium, PV is greater than RT for all pressures at ordinary temperatures. Hence, fugacity in those gases always remains greater than the pressure(PGTRB 2005-06).

4.1.8. Thermodynamics of IDEAL and Non-Ideal Mixtures

 A mixture consists of two or more components that are physically combined but not chemically bonded.

UNIT-6 ORGANIC CHEMISTRY-1

Your Success is Our Goal ...

SERVICES AVAILABLE FOR PG TRB EXAM

- 🔶 Material for All 10 Units
- E-Book for Psychology & Education Methodology
- E-Book for GK
- Online Recorded Video Classes
- 🔶 Online Test
- Question Bank
- Regular Classes

tcaexamguide 📐

Teacher's Care Academy 🕩

www.tcaexamguide.com

tcaexamguide@gmail.com M

CHEMISTRY

ORGANIC CHEMISTRY

PG TRB (2025-2026)

UNIT - 6

FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

 \leq

INDEX

 \geq

 \geq

S.N.	TOPICS	P.N.
6.1.	IUPAC NOMENCLATURE	1
	6.1.1. Nomenclature of Optical Isomers	1
	6.1.2. D.L System of Nomenclature	1
	6.1.3. Erythro and Threo System of Nomenclature	3
	6.1.4. R.S. Nomenclature	4
	6.1.5. R.S- Nomenclature from Flying-Wedge Formula.	9
	Exercise Questions 1	9
		4.0
6.2.	REGIOCHEMISTRY	10
	6.2.1. Regioselectivity	11
	6.2.2. Markovnikov's Rule	11
	6.2.3. Regioselective and Regiospecific reactions	12
	6.2.4. Addition of HBr to alkenes	16
	6.2.5. Chemoselective reactions	19
	Exercise Questions - 2	24
6.3.	INTRODUCTION FOR STEREOCHEMISTRY	25
	6.3.1. Stereochemistry -definition	26
	6.3.1.1. Isomers and Their Classification	27
	6.3.1.2. Optical Activity	28
	6.3.1.3. Chirality	29
	Exercise Questions - 3	31
6.4.	STEREOISOMERS	33
	6.4.1. Diastereomers:	33
	6.4.2. Geometrical Isomers:	34
	6.4.2.1. Flying-Wedge or Wedge-Dash Projection	35
	6.4.2.2. Fischer Projection	35

3

K

	E & 7 SYSTEM OF NOMENCIATURE FOR GEOMETRICAL	75
6.8.	GEOMETRICAL ISOMERISM	74
	Exercise Questions - 8	73
	6.7.2. Stereospecific And Stereoselective Reactions:	72
	6.7.1. Principle of Asymmetric Synthesis:	71
6.7.	ASYMMETRIC INDUCTION	71
	Exercise Questions - 7	70
	6.6.3. Meso Compounds:	66
	6.6.2. Erythro (Syn) and Threo (Anti) Diastereomers:	65
	6.6.1. Properties of Diastereomers:	65
6.6.	DIASTEREOMERS	65
	Exercise Questions - 6	64
	6.5.2. Chiral and Achiral Molecules with Two Stereogenic Centres:	63
	6.5.1. Optical Activity (Enantiomerism):	62
6.5.	STEREOGENIC CENTRE (STEREOGENICITY)	61
	Exercise Questions - 5	60
	6.4.2.9. Conformational Analysis of Cyclic Systems	55
	6.4.2.8. Conformational Analysis:	52
	6.4.2.7. Configuration	41
	6.4.2.6. Stereochemistry Of Compounds Containing Nitrogen, Phosphorous and Sulphur	40
	Exercise Questions - 4	39
	6.4.2.5. Elements of Symmetry	37
	6.4.2.4. Newman Projection	37
	6.4.2.3. Sawhorse Formula	36

M

L3

	Exercise Questions - 9	79
6.10.	NOMENCLATURE OF BICYCLIC RING SYSTEMS	81
6.11.	FUSED RING AND BRIDGED SYSTEM	82
6.12.	FUSED RING	85
6.13.	POLYCYCLIC SYSTEMS IN NATURE	90
	Exercise Questions - 10	91
6.14.	STEREOSPECIFIC REACTIONS	92
	6.14.1. Bromination of Alkenes	93
	6.14.2. Insertion of Carbene to Alkene	94
	6.14.3. Hydroboration-Oxidation	94
	6.14.4. Hydroxylation of Alkene:	95
	6.14.5. Mechanism of Hydroxylation with KMnO4:	96
	6.14.6. Hydroxylation with HCO ₂ OH:	96
	Exercise Questions - 10	98
6.15.	STEREO SELECTIVE REACTIONS WITH EXAMPLES	99
	6.15.1. Stereospecificity	99
	6.15.2. Stereoselective Reactions	99
	6.15.3. Principle of Stereoselectivity	100
	6.15.4. Stereoselectivity vs Stereospecificity	106
	Exercise Questions - 12	106
6.16.	AROMATICITY	107
	6.16.1. Six-Membered Rings	110
	6.16.2. Five-, Seven-, and Eight-Membered Rings	113
	6.16.3. Other Systems Containing Aromatic Sextets	117

M

L3

	Exercise Questions - 13	118
6.17.	ORGANIC REACTIVE INTERMEDIATE	119
	6.17.1. Carbocation	119
	6.17.2. Carbocation Classification	119
	6.17.3. Carbocation Stability	120
	6.17.4. Delocalization Stability:	122
	6.17.5. The Stability by Aromatation:	123
	6.17.6. The most stable carbocation	124
	6.17.7. Arenium ions	124
	6.17.8. Non-Classical Carbocations	126
6.18.	CARBANIONS	128
6.19.	FREE RADICALS	138
6.20.	CARBENES	141
6.21.		146
6.21.6.22.	BENZYNES	146
6.21. 6.22.	BENZYNES Exercise Questions - 14	146 150 153
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION	146 150 153 154
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions	146 150 153 154 155
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions	146 150 153 153 155 155
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions 6.23.1.2. Free Radical Substitution Reactions	146 150 153 154 155 155 157
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions 6.23.1.2. Free Radical Substitution Reactions 6.23.2. Addition Reactions	146 150 153 153 155 155 155 157 158
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions 6.23.1.2. Free Radical Substitution Reactions 6.23.2. Addition Reactions 6.23.2.1. Electrophilic Addition Reactions	146 150 153 154 155 155 155 157 158 159
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions 6.23.1.2. Free Radical Substitution Reactions 6.23.2. Addition Reactions 6.23.2.1. Electrophilic Addition Reactions 6.23.2.2. Nucleophilic Addition Reactions	146 150 153 153 155 155 155 155 155 157 158 159
6.21. 6.22. 6.23.	BENZYNES Exercise Questions - 14 ORGANIC REACTION 6.23.1. Substitution Reactions 6.23.1.1. Nucleophilic Substitution Reactions 6.23.1.2. Free Radical Substitution Reactions 6.23.2. Addition Reactions 6.23.2.1. Electrophilic Addition Reactions 6.23.2.2. Nucleophilic Addition Reactions 6.23.2.3. Free Radical Addition Reactions	146 150 153 154 155 155 155 157 158 159 161

M

3

R

	6.23.3. Nucleophilic Additions to Alkenes	163
	6.23.3.1. Cyanoethylation	164
	6.23.3.2. Hydro-Cyano-Addition	165
	6.23.3.3. Michael Addition	165
	6.23.3.4. Epoxidation of α , β -Unsaturated Carbonyls	166
	6.23.4. Stereochemistry of Free Radical Addition of HBr	168
	6.23.4.1. Free Radical Addition of Halomethanes	168
	6.23.4.2. Other Free Radical Additions of Alkenes	169
	Exercise Questions - 15	170
6.24.	COMMON NAMED REACTIONS AND REARRANGEMENTS	171
	6.24.1. Heck reaction	171
	6.24.2. Suzuki Coupling	173
	6.24.3. Mitsunobu Reaction	175
	6.24.4. Baylis–Hillman Reaction	178
	6.24.5. Nef Reaction	180
	6.24.6. Ritter reaction	18
	6.24.7. Pinacol and Pinacolone	183
	6.24.8. Wagner–Meerwein Rearrangement	186
	6.24.9. Demjanov rearrangement	187
	6.24.10. Pauson Khand Reaction	189
	6.24.11. Stille Coupling	190
	6.23.12. Mukaiyama Aldol Addition	191
	6.24.13. Metathesis	192
	6.24.14. Henry Reaction	199
	6.24.15. Dienone Phenol Rearrangements	200
	6.24.16. Favorskii Rearrangement	201
	6.24.17. Baeyer-Villiger Oxidation	203
	6.24.18. Wolff Rearrangement	204
L		

M

13

L3

	6.24.19. Wittig Reaction (TRB 2015)	206
	6.24.20. Neber Rearrangement	209
	6.24.21. Stevens Rearrangement	210
	6.24.22. Hofmann Rearrangement (TRB 2015)	212
	6.24.23. Lossen Rearrangement:	213
	6.24.24. Curtius Rearrangement	215
	6.24.25. Beckmann Rearrangement	217
	6.24.26. Benzidine Rearrangement	219
	6.24.27. Von Richter Rearrangement	220
	6.24.28. Applications	222
	Exercise Questions - 16	223
6.24.	OPTICAL ROTATORY DISPERSION	224
6.25.	CIRCULAR DICHROISM	229
	Exercise Questions - 17	232
6.26.	IMPORTANT MULTIPLE QUESTIONS	234

REFERENCES

Stereo Chemistry of organic compounds by D. Nasipuri.
 Named organic reactions by Thomas laue and Andreas Plagens.
 Organic Reactions Stereo Chemistry and mechanism by P.S. kalsi.
 Organic chemistry by Morrison and boyd.
 Reaction mechanism by V.K. Ahluwalia.

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER)

<u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

PG TRB CHEMISTRY UNIT 6 - ORGANIC CHEMISTRY

SYLLABUS

IUPAC Nomenclature:

Organic molecules including regio and stereoisomers.

Principles of Stereochemistry:

Configurational and conformational isomerism in acyclic and cyclic compounds, stereogenicity, stereoselectivity, enantioselectivity, diastereo selectivity and asymmetric induction. Geometrical isomerism resulting from double bonds – E, Z system of nomenclature, monocyclic compounds and fused ring systems, stereo specific and stereo selective reactions with examples.

Aromaticity:

Benzenoid and non-benzenoid compounds, generation and reactions.

Organic Reactive Intermediates:

Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and nitrenes. Organic reaction mechanisms involving the addition, elimination and substitution reactions with the electrophilic, nucleophilic or radical species. Reaction pathways determination.

Common Named Reactions and Rearrangements:

Still Coupling, Heck reaction, Pusond-Kahn Reaction, Suzuki Coupling, Mitsunobu reaction, Baylis-Hillman reaction, Mukiayama's reaction, Metathesis reaction. Nef reaction, Henry reaction, Ritter reaction. Pinacol-Pinacolone, Wagner-Meerwein, Demjanov, dienone-phenol, Favorskii, Baeyer-Villiger, Wolff, Wittig, Neber, Stevens, Hofmann, Lossen, Curtius, Beckmann, Benzidine and Von Richter rearrangements. Applications in organic synthesis.

Polarimetry:

Circular dichroism, Optical Rotatory Dispersion, principles and applications.

6.1. IUPAC NOMENCLATURE

6.1.1. Nomenclature of Optical Isomers

Following three nomenclatures are used for optically active compounds:

6.1.2. D.L System of Nomenclature

 This nomenclature is mainly used in sugar chemistry or optically active polyhydric carbonyl compounds. This is a relative nomenclature because all the configurations described with respect to glyceraldehydes. All sugars whose Fischer projection formula shows the OH group on the right hand side of the chiral atom belong to the D-series.

Similarly, if OH is on the left hand side, then the sugar belongs to the L-series.

L-series

D(+) glyceraldehyde

- It must be noted that there is no relation between sign of rotation and (+, or d,I) and configuration (D and L) of enentiomer.
- Any compound that can be prepared from, or converted in to D(+) glyceraldehydes will belong to D-series and similarly any compound that can be prepared from, or converted in to L(-) glyceraldehydes will belongs to the L-series.

6.1.3. Erythro and Threo System of Nomenclature

This nomenclature is mainly used only in those compounds which have only two chiral carbons and the following structures:

$$R'-Cab-Cab-R''$$
 or $R'-Cab-Cbc-R''$

i.e. out of six substituent on two asymmetric carbons, at least one should be same in both the carbons. When two like groups in fisher projection formula are drawn on the same side of vertical line, the isomer is called erythro form; if these are placed on the opposite sides the isomer is said to be threo form. (TRB 2017)

erythro form

threo form

Following are some examples of threo and erythro form.

erythro form

CH₃ Н _____ Вг H Br C_6H_5

threo form

6.1.4. R.S. Nomenclature

- The order of rearrangement of four groups around a chiral carbon is called the absolute configuration around that atom. System which indicates absolute configuration was given by three chemists R.S. Cahn, C.K. Ingold and V. Prelog. This system is known as (R) and (S) system or the Cahn-Ingold Prelog system. The letter (R) comes from the Latin rectus (means right) while (S) comes from the Latin sinister (means left).
- Any Chiral carbon atoms have either an (R) configuration or a (S) configuration.
 Therefore, one enantiomer is (R) and the other is (S). (TRB 2024)
- A recemic mixture may be designated as (RS), meaning a mixture of the two.
- The R, S nomenclature involves two steps:

Step I:

 The four ligands (atom or groups) attached to the chiral centre are assigned a sequence of priority according to sequence rules.

Rule 1: If all the four atoms directly attached to the chiral carbon are different, priority depends on their atomic number. The atom having highest atomic number gets the highest priority, i.e., (1).The atom with lowest atomic number is given lowest priority, i.e. (2), the group with next higher atomic number is given the next higher priority (3) and so on.

For example:

$${}_{1}H^{1}$$
 ${}_{1}H^{2}$ ${}_{1}H^{3}$

Rule 3: if two or more of the atoms directly bonded to the chiral carbon are identical, the atomic number of the next atom is used for priority assignment. If these atoms also have identical atoms attached to them, priority is determined at the first point of difference along the chain. The atom that has attached to it an atom of higher priority gets the higher priority.

In the above example, the atoms connected directly to the chiral carbon are iodine and three carbons.
Iodine has the highest priority.
Connectivity of other three carbons are 2H and Br, 2H and C and 2H and C.
Bromine has the highest atomic number amongst C, H, Br and thus CH₂Br has highest priority among these three groups (i.e. priority number 2).
The remaining two carbon are still identical (C and 2H) connected to the second carbon of these groups are 2H and I and 2H and C. Iodine has highest priority.
Amongst these atoms, so that-CH₂-CH₂-I is next in priority list and CH₂-CH₂-CH₃ has the last priority. Rule 4: If a double or a triple bond is linked to chiral centre, the involved electrons are duplicated or triplicated respectively.

Step-II:

The molecule is then visualised so that the group of lowest priority (4) is directed away from the observer (at this position the lowest priority is at the bottom of the plane). The remaining three groups are in a plane facing the observer. If the eye travels clockwise as we look from the group of highest priority to the group of second and third priority (i.e. 1 → 2 → 3 with respect to 4) the configuration is designated R. If arrangement of groups is in anticlockwise direction, the configuration is designated as S.

For example:

Let us apply the whole sequence to bromochlorofluoromethane

Clockwise arrangement of

(1) (2) and (3).

Anticlockwise arrangement of

S

In this Fischer projection, the least priority number is not at the bottom of the plane. In such cases, the Fisher projection formula of the compound is converted in to another equivalent projection formula in such a manner that atom the lowest priority is placed vertically downward. This may be drawn by two interchanges between four priority numbers. The first interchange involves the two priority numbers, one is the least priority number and the other is the priority number which is present at the bottom of the plane. In the above case, first interchanges will takes place between 2 and 4.

A second inter change creates the original molecule (i.e. A).

Note: • An odd number of interchange of positions of groups on chiral carbon gives different compound. • An even number of interchange of positions of groups on chiral carbon gives same compound. An alternative, simple and most widely accepted procedure used now (Epling,1982) to assign R,S configuration in the case of Fischer projections is as followes: Case-I: R and S nomenclature from Fischer projection formula (Golden rule): If in a Fischer projection, the group of lowest priority (4) is on a vertical line, then the assignment of configuration is R for a clockwise sequence of 1 to 2to 3 and S for anticlockwise sequence. (TRB 2015)

For example:

Anticlockwise arrangement hence S- configuration

 However, if the group of lowest priority is on horizontal line, then the assignment of configuration is S for a clockwise sequence of 1 to 2 to 3, and R for the anticlockwise sequence.

Anticlockwise arrangement but lowest priority at horizontal line hence R- configuration

 When molecule contain two or more chiral centres, each chiral centre is assigned an R or S configuration according to the sequence and conversion rules. Thus (+) tartaric acid is (2R, 3R) (+) tartaric acid.

G 95665 35080

Configuration at chiral carbon - 2.

Anticlockwise arrangement but lowest priority at horizontal line hence R- configuration

Configuration at chiral carbon - 3.

Anticlockwise arrangement but lowest priority at horizontal line hence R- configuration

6.1.5. R.S- Nomenclature from Flying-Wedge Formula.

If the group of the lowest priority is away from the observer (i.e., bonded by dashed line) and the priority sequence (1 2 3) is clockwise, then the configuration is assigned as R. If the priority sequence is anticlockwise then the configuration is S.

3_2

Lowest priority order is on deshed line

Clockwise arrangement thus configuration is R

If the group of lowest priority is not bonded by dashed line then interchange a pair of groups so that the group with the lowest priority is bonded by dashed line. Now see the sequence (1 2 3), if it is clockwise then the configuration is assigned as S and if anticlockwise R. This is because you have interchanged a pair of groups and now you are determining the configuration of enantiomer of original molecule.

Exercise Questions 1:

1. What is the prefix used to indicate the presence of a stereocenter in a molecule?

A) "iso-"

B) "stereo-"

C) "R/S-"

D) "cis/trans-"

2. What is the term used to describe isomers that differ in the arrangement of atoms in space?

A) Structural isomers	B) Stereoisomers
C) Conformational isomers	D) Tautomers

3. What is the prefix used to indicate the presence of a geometric isomer?

A) "cis-" B) "trans-" C) "geo-" D) Both A and B

4. What is the term used to describe isomers that differ in the arrangement of atoms around a double bond?

A) Structural isomers	B) Stereoisomers	
-----------------------	------------------	--

C) Geometric isomers D) Conformational isomers

5. What is the term used to describe isomers that differ in the arrangement of atoms in a ring?

A) Structural isomers	B) Stereoisomers
C) Geometric isomers	D) Conformational isomers

6. What is the prefix used to indicate the presence of an optical isomer?

-h" (Δ	B) "I-"	C) "R-"	D) Both A and B
7.	D) 1	0, 1	

7. What is the term used to describe isomers that differ in the arrangement of atoms in a molecule, but not in the arrangement of atoms around a double bond?

A) Structural isomers B) Stereoisomers

C) Conformational isomers

D) Tautomers

6.2. REGIOCHEMISTRY

Regiochemistry is the discipline of chemistry that explains chemical processes' regioselectivity. In a chemical reaction with many products, it identifies which one is the major product and which one is the minor product. This is dependent on the target molecule's probable sites to which the reagent molecules will be attached. In a substituted benzene ring, for example, the reagent molecule can attach to one of three potential places, *ortho*, *para*, or *meta*, depending on the substituent already present in the benzene ring.

 The chlorination of toluene is seen in the above reaction. The chlorine atom can bind to the toluene molecule in a number of different places. The para replacement, on the other hand, is the most reliable. As a result, it is the main product of this reaction.

6.2.1. Regioselectivity

- The preference of chemical bonding or breaking in one direction over all other potential orientations is referred to as regioselectivity in chemistry. It can refer to any of the numerous possible positions that a reagent can affect, such as which proton a strong base will extract from an organic molecule or where an additional substituent will be applied to a substituted benzene ring.
 - In the presence of water, the synthesis of halohydrin from an alkene is regioselective.
- TCA
- This reaction follows the Markovnikov pathway and proceeds with anti stereospecificity.
- The nucleophile is connected to the more substituted carbon and the electrophile to the less substituted carbon.
- A halohydrin production from an alkene is an example:

 Bromine works as an electrophile in the given case, whereas the OH group from water acts as a nucleophile.

6.2.2. Markovnikov's Rule

- The result of some chemical addition reactions can be described using Markovnikov's Rule, also known as Markownikoff's Rule. This rule was initially proposed in 1865 by Russian scientist Vladimir Vasilyevich Markovnikov. Markovnikov's rule is an empirical rule for predicting the regioselectivity of alkene and alkyne electrophilic addition processes.(TRB 2015)
- When a protic acid (HX) is introduced to an asymmetric alkene, the acidic hydrogen binds to the carbon with the most hydrogen substituents, while the halide group binds to the carbon with the most alkyl substituents.

- "Hydrogen is added to the carbon with the most hydrogens, and halide is added to the carbon with the least hydrogens," as a simplified version of the rule goes.
- The addition of hydrobromic acid (HBr) to propene, as shown below, is an example of a reaction that follows Markovnikov's rule.

- The reaction depicted above shows that the bulk of the products generated follow Markovnikov's rule, while the minority do not.
- It's worth noting that Markovnikov's rule was designed especially for use in the addition reaction of hydrogen halides to alkenes. Based on the regioselectivity of the reaction, Anti-Markovnikov addition reactions are the opposite of 'Markovnikov' addition reactions.

6.2.3. Regioselective and Regiospecific reactions

- Suppose, you are walking 100 metre distance in a straight path and you suddenly find two different routes A and B from the same starting point. After walking 100 metres on route A, you find the house of your friend A and after walking 100 metres on route B, you find the house of your friend B. If you analyze the situation, then you are providing the same physical effort and energy to walk 100 metres in two different routes, and you are getting two targets, houses of friend A and friend B. For chemical reactions, you can start with the same starting materials and reaction conditions, and the reactants can react with each other via different pathways. Each pathway will lead us to different product.
- Let us take the following example:

In the above reaction after heating the alcohol with sulphuric acid, we get two products A and B, which have different position of double bonds. Product A, which is the trisubstituted alkene is the major product and Product B is the minor product. They differ by the position of double bond and are generated by two different pathways, Pathway A and Pathway B as shown below:

Let us take another example as shown below:

In the second example, 2-chloropropane, A' is the major product. Here, pathway A' involves a secondary carbocation, which is more stable than the primary carbocation formed in pathway B'. So, we get two different products A' and B', by two different pathways and product A' is formed in greater proportion than product B'. If a reaction takes place on an unsymmetrical compound and more than one reacting pathways are possible due to site selectivity of one functional group in a reaction, then the reaction is called regiochemical reaction. Now, all regiochemical reactions are not regioselective. For example, consider the following reaction:

In this case, the reaction is regiochemical as it can occur by two different pathways. But, the reaction is not regioselective as the two products are formed in equal proportions and no product is major product for this reaction. Thus, If out of the several pathways, one pathway predominates, then the reaction is called regioselective reaction. In regioselective reactions, if only one product is formed exclusively, then the reaction is called regiospecific reaction. Regiochemistry is the study of different pathways that two reactants can take during a reaction. In the first example, products A and B are called regioisomers and in the second example, products A' and B' are regioisomers of each other. Now why these are called regioisomers? It is because, they are formed by two different pathways of a regiochemical reaction. Now, let us study what is the nature of isomerism present in case of regioisomers. Do you remember the term constitutional isomers? Constitutional isomers are compounds that have the same molecular formula and different connectivity. Regioisomers are constitutional isomers. So, regioisomers will be generated from the same chemical reaction, they will have the different bond connectivity and the same chemical formula.

- It is clearly evident that A and B have the same molecular formula, but different bond connectivity, and they are formed by two different pathways of one chemical reaction.
 Hence, they are regioisomers of each other. Similarly, A' & B' are also the regioisomers.
- Regioselectivity is a type of substrate selectivity in which substrates have the capability to react at more than one centre but react at one centre at a higher rate than the other. For example, 2-methylcyclohexanone on base induced alkylation gives mostly 2,2 dimethylcyclohexanone and only small amount of 2,6-dimethylcyclohexanone. Thus, If we add a non-symmetrical reagent (i.e. A-B where A is not equal to B) to nonsymmetrical starting materials (think an alkene, where the groups at each end of the double bond are

different), then two isomeric products that are constitutional isomers can be obtained. The reaction is regiochemical reaction. If one product predominates over the other, then it is called regioselective. According to IUPAC Gold Book, "A regioselective reaction is one in which one direction of bond making or breaking occurs preferentially over all other possible directions. Reactions are termed completely (100%) regioselective if the discrimination is complete, or partially (x%), if the product of reaction at one site predominates over the product of reaction at other sites.".

E2 reaction is regioselective in nature. Let us explain how?

Generally, in a E2 reaction, we have a halide and a proton to be removed and form a double bond. Now, if there are option of two protons to be removed, then the two options might lead to two different products. Thus, such reactions can have different regiochemical outcomes, which means the reaction can occur at two different places of the molecule. The removal of proton in E2 generally leads to the most-substituted alkene as the major product. However, steric factor is also important for removal of proton. If the hydrogen leading to more substituted double bond is crowded and not easy to approach, then the base approaches other proton more easily which is less crowded. If the bases have a bulky structure, then in some cases, the least substituted alkene is formed as the major product.

 Now, let us study regioselectivity observed in some commonly known reactions such as addition reactions, hydration, epoxidation, electrophilic substitution, Diels Alder reaction and 1, 3-Dipolar cycloaddition reactions.

6.2.4. Addition of HBr to alkenes

 When compound I reacts with HBr, it gives II as the major product and when compound I reacts with HBr in presence of peroxide, it gives III as the major product. Both these reactions are regioselective. In case of regioselective reactions, there is preferential reactivity of one site over the other of the same functional group, which is the olefinic double bond in this case.

(a) Hydration of Alkenes

When compound IV reacts with Hg(OAc)₂ followed by NaBH₄, it gives V as the major product and when compound IV reacts with BH₃.THF, it gives VI as the major product. Both these reactions are regioselective. In case of regioselective reactions, there is preferential reactivity of one site over the other of the same functional group, which is the olefinic double bond in this case.

(b) Hydration of Alkynes

• When compound VII reacts with H_gSO_4/H_2SO_4 , it gives VIII as the major product and when compound VII reacts with BH₃.THF followed by NaOH/H₂O₂, it gives XI as the major product. Both these reactions are regioselective. In case of regioselective

TEACHER'S CARE PUBLICATION

UNIT-8 **ANALYTICAL CHEMISTRY-1**

Your Success is Our Goal

SERVICES AVAILABLE FOR PG TRB EXAM

- **Material for All 10 Units**
- E-Book for Psychology & Education Methodology
- **E-Book for GK**
- **Online Recorded Video Classes**
- **Online Test**
- **Question Bank**
- Regular Classes

tcaexamguide 🍃

Teacher's Care Academy 🔼

www.tcaexamguide.com

tcaexamguide@gmail.com M

CHEMISTRY

ANALYTICAL CHEMISTRY

PG TRB (2025-2026)

UNIT - 8

FIRST EDITION

TEACHER'S CARE PUBLICATION

38/23, Vaigundaperumal Koil Street, Kancheepuram- 631502 Mobile : 95665 35080, 9786269980 Land Line : 044-2723 5080

Branch Office : 65C, Thillai Ngr(West), 4th Cross St, Trichy (76399 67359) Branch Office: Advaitha Ashram Road, New Bus Stand, Salem (93602 68118)

 \leq

INDEX

 \geq

 \geq

S.No	CONTENT	P.No.
8.	ANALYTICAL CHEMISTRY	1
	INTROUCTION	1
	METHOD OF ANALYSIS	3
	EXERCISE 1	4
8.1.	DATA ANALYSIS	5
	8.1.1. NATURE OF QUANTITATIVE MEASUREMENTS AND TREATMENT OF DATA:	6
	8.1.2. MEAN (^x):	7
	8.1.3. MEDIAN (M):	7
	8.1.3.1. MEAN DEVIATION (\overline{d}):	
	EXERCISE 2	9
	8.1.4. PRECISION:	10
	8.1.5. STANDARD DEVIATION(σ):	11
	8.1.6. ACCURACY:	12
	EXCERSIE 3	14
	8.1.7. SIGNIFICANT FIGURES:	15
	EXERCISE 4	17
	8.1.8. GAUSSIAN DISTRIBUTION CURVE:	18
	8.1.9. NULL HYPOTHESIS:	21
	EXERCISE 5	23
	8.1.10. CONFIDENCE INTERVAL OF MEAN:	25
	8.1.10.1. CONFIDENCE LIMITS:	
	EXERCISE 6	27
	8.1.11. REJECTION OF DATA(Q-Test):	29
	8.1.12. STUDENT'S t-TEST:	32
	8.1.13. STUDENT'S F-TEST	36

3

13

	EXERCISE 7	39
8.2.	ERRORS	41
	8.2.1. TYPES: (BASED ON OCCURRENCE)	41
	8.2.2. BASED ON ACCURACY AND PRECISION:	44
	EXERCISE 8	45
	8.3.1. LINEAR REGRESSION:	47
	8.3.2. COVARIANCE:	50
	8.3.3. CORRELATION CO-EFFICIENT:	53
	EXERCISE 9	56
8.3.	SAMPLING	58
	8.3.1. THEORIES OF SAMPLING:	58
	8.3.2. PRINCIPLES OF SAMPLING:	60
	8.3.3. SAMPLING METHODS:	61
	8.3.4. GROSS SAMPLING:	71
	8.3.5. SAMPLER'S RESPONSIBILITY AND PITFALLS:	73
	8.3.6. HAZARDS IN SAMPLING:	75
	EXERCISE 10	78
8.4.	SEPERATION TECHNIQUES	79
	8.4.1. COLUMN CHROMATOGRAPHY	85
	EXERCISE 11	91
	8.4.2.TLC (THIN LAYERCHROMATOGRAPHY)	92
	EXERCISE 12	102
	8.4.3. PAPER CHROMATOGRAPHY(PC)	103
	EXERCISE 13	110
	8.4.4.GAS CHROMATOGRAPHY (GC)	112
	EXERCISE 14	118
	8.4.5. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)	120

M

3

13

-		1
	EXERCISE 15	126
8.5.	THERMO ANALYTICAL METHODS	127
	8.5.1. THERMO GRAVIMETRIC ANALYSIS (TGA)	129
	EXERCISE 16	134
	8.5.2. DIFFERENTIAL THERMAL ANALYSIS(DTA)	136
	EXERCISE 17	146
	8.5.3. DIFFERENTIAL SCANNING CALORIMETRY (DSC)	148
	EXERCISE 18	152
	MULTIPLE CHOICE QUESTIONS	154

SYLLABUS

DATA ANALYSIS:

Nature of quantitative measurements and treatment of data. Mean, median, precision and accuracy, standard deviation, significant figures, Gaussian distribution curves, Null Hypothesis, Confidence interval of mean, Rejection of data (Q test), Student's t, F tests. Errors – absolute and relative errors, linear regression, covariance and correlation coefficient.

SAMPLING:

Principles of sampling methods for solid, liquids and gases. Gross sampling, Sampler's responsibility and pitfalls, hazards of sampling.

SEPARATION TECHNIQUES:

Classical forms of chromatography – Introduction, principle and applications of column, thin layer chromatography and paper chromatography, Gas and High-Performance Liquid Chromatography.

THERMO ANALYTICAL TECHNIQUES:

Principles and applications of TGA, DTA and DSC.

REFERENCES

1) Elements of Analytical Chemistry by Gopalan R., Rangarajan K., Subramanian P.S.
2) Analytical Chemistry by Gurdeep R. Chatwal and Sham K. Anand
3) Instrumental Methods of Chemical Analysis by Gurdeep R. Chatwal and Sham K.
4) Instrumental Methods of Chemical Analysis by B.K. Sharma
5) Practical Statistics for Analytical Chemists by Robert L. Anderson
6) Basic Concepts of Analytical Chemistry by S.M.Khopkar
7) Fundamentals of Analytical Chemistry" by Douglas A. Skoog, Donald M. West, F.
James Holler, and Stanley R. Crouch
8) Analytical Chemistry - Theory and Practice by U.N Dash

FOR ANSWERS SCAN QR CODE

FOR ANSWERS DOWNLOAD TCA APP

PG TRB CHEMISTRY PREVIOUS YEAR SOLVED QUESTION PAPER

2022, 2019, 2017 & 2015

ஆகியவற்றின் விடைகள் மற்றும் விரிவான விளக்கங்களை புத்தக வடிவில் பெற்றுக் கொள்ள தொடர்புக் கொள்ள வேண்டிய அலைபேசி எண்கள்:

95665 35080;	97862 69980;
93602 68118;	76399 67359

5

 $\overline{}$

TEACHER'S CARE ACADEMY, KANCHIPURAM (TRB, TNPSC, TET, NET, SLET COACHING CENTER) <u>HEAD OFFICE</u> NO. 38/23, Vaigunda Perumal Koil, Sannathi Street, Kanchipuram – 1. Cell: 9566535080 B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359

B.Off 2: 65C, Thillai Ngr(West), 4th Cross St, Trichy– 620018, Cell : 76399 67359 B.Off 3: 266-C - Advaitha Ashram Road, New Bus Stand, Salem– 4, Cell : 93602 68118

PG TRB CHEMISTRY – UNIT 8

8. ANALYTICAL CHEMISTRY

INTRODUCTION:

Historically chemistry could be divided into five main areas. Analytical chemistry is an unique experimental science wherein there are phenomenal developments each year. This results in progress in the formulation of better methods of analysis with more selectivity as well as sensitivity. Many advances and changes in these areas were made possible by analytical results.

Figure 1: Branches of Chemistry

Analytical chemistry is the study of separation, identification and quantification of the chemical components of natural and artificial materials. A complete chemical analysis is essential to understand the chemistry of a substance.

This involves the quantitative and qualitative treatment of the substance under study.Infact, analytical chemistry is the science of chemical identification and determination of the composition (atomic, molecular, phase) of substances and materials and their chemical structure.

Analytical chemistry seeks ever improved means of measuring the chemical composition of natural and artificial materials. The techniques of this science are used to identify the substances which may be present in a material and to determine the exact amounts of the identified substances.

An Analytical chemist tries to serve the needs of many fields:

- In medicine, analytical chemistry is the basis of clinical laboratory tests which help physicians to diagnose diseases and chart progress in recovery.
- In industry, analytical chemistry provides the means of testing raw materials and for assuring the quality of finished product whose chemical composition is critical.
- Many house-hold products, fuels, paints, pharmaceuticals, etc. are analyzed by the procedures developed by the analytical chemists before being sold to the consumer.
- Environmental quality is often evaluated by testing for suspected contaminants using the techniques of analytical chemistry.
- The nutritional value of food is determined by chemical analysis for major components such as proteins and carbohydrates and trace components such as vitamins and minerals.
- > Indeed, even the calories in food are often calculated from its chemical analysis.
- An analytical chemist also makes important contribution to fields as diverse as forensics, archaeology and space science.

Types:

Analytical chemistry consists of two types of analysis:

i) Qualitative Analysis:

It deals with the identification of elements, ions or compounds present in a sample.

ii) Quantitative Analysis:

It deals with the determination of how much of one or more constituents are present in the sample which may be solid, liquid, gas or a mixture.

DIFFERENCES:

S. No	Qualitative Analysis	Quantitative Analysis
1	It identifies the presence or absence	It measures the amount or concentration
	of a particular substance in a sample.	of a substance in a sample.
2	It is performed using simple chemical tests that produce a visual change, such as a colour change or a precipitate formation.	It is performed using instrumental methods that produce a numerical result, such as a mass or a volume.
3	It is used to identify unknown substances or to confirm the identity of a known substance.	It is used to determine the purity or composition of a substance.
4	It is less precise and less accurate than quantitative analysis because it relies on subjective observations.	It is more precise and more accurate than qualitative analysis because it relies on objective measurements.
5	It can be performed using a small sample size.	It requires a larger sample size to obtain accurate results.

Table:1

METHODS OF ANALYSIS:

To select an appropriate method of analysis, following important factors must be taken into account:

(a) The nature of the information which is sought.

(b) The size of the sample available and the proportions of the constituents to be determined and,

(c) The purpose for which analytical data are required.

i) Classical methods

Classical methods are routine, simple methods that are used in laboratories. They are simple procedures and cost-effective. They do not need sophisticated instruments and so these methods are preferred where high accuracy is not essential. The classical methods can be subdivided into two types namely –

(a) Gravimetric analysis – This method involves the quantitative measurement of the analyte through the measurement of mass. This method involves determining the mass of the analyte or some compound chemically related to it.

(b) Volumetric analysis – This method involves titrations. The volume of a solution containing sufficient standard reagent to react completely with the analyte is measured.

Analytical methods are divided into two categories, as follows,

Figure 2: Method of Analysis

ii) Instrumental methods:

These methods involve use of instruments. These involve very accurate measurements.

Some physical property of the analyte is measured by an instrument, which gives us information about the analyte. Depending on the physical property under study, the instrumental methods can be broadly classified as –

(a) Optical methods – These are based on the interaction of the analyte with electromagnetic radiations (i.e light).

(b) Electroanalytical methods – These involve measuring some electric property (e.g.– conductance, electrical potential, etc.) of the analyte.

EXERCISE: 1

1. The primary purpose of analytical chemistry is ------

- A) To synthesize new compounds B) To study the properties of matter
- C) To separate and identify substances D) To design new laboratory instruments

2. Which of the following is a common technique used in qualitative analysis?

- A) Gas chromatography
- C) Titration

- B) Atomic absorption spectroscopy
- D) X-ray diffraction

3. What does a calibration curve represent in analytical chemistry?

- A) The relationship between the sample's composition and its color
- B) The relationship between sample concentration and instrument response
- C) The time required for a reaction to complete
- D) The accuracy of a measurement technique

4. Which of the following is an example of a destructive analytical method?

- A) Spectrophotometry B) Chromatography
- C) Atomic absorption spectroscopy D) Titration

5. ----- is used to measure the concentration of an analyte in a solution?

- A) Refractometer B) pH meter
- C) Spectrophotometer D) Thermometer

6. Which of the following is a common sample preparation method in analytical chemistry?

A) Filtration B) Evaporation C) Drying D) All of the above

7. What is the purpose of a blank sample in analytical experiments?

- A) To ensure that the sample is completely free from contaminants
- B) To measure the background noise and instrument response without the analyte
- C) To determine the calibration of the instrument
- D) To test the final product after analysis

8. Quantification in analytical chemistry is ------

- A) Determining the molecular structure of a compound
- B) Measuring the physical properties of a sample
- C) Measuring the amount or concentration of an analyte in a sample
- D) Identifying the components present in a sample

8.1.DATA ANALYSIS:

It is defined as researching, organizing, analyzing and changing data in order to bring out the useful information. In analytical chemistry, quantitative measurement and data treatment involves determining the amount of a substance in a sample, and using calculations to determine the concentration of that substance

TCA

8.1.1. NATURE OF QUANTITATIVE MEASUREMENTS AND TREATMENT OF DATA:

Quantitative analysis:

A method used to determine the amount or concentration of a substance in a sample. It involves measuring the sample's physical properties, such as mass, volume, and density.

Data treatment:

Involves using statistical methods to evaluate the precision of data sets and determine if a questionable data point should be discarded.

Analytical methods:

There are several analytical methods used in quantitative analysis, including:

- Gravimetric analysis: Determines the mass of an analyte or a compound related to it.
- Volumetric analysis: Uses the volume of a solution containing a reagent to react with the analyte.
- Electroanalytical analysis: Measures electrical properties of a sample to determine its composition.
- Spectroscopic analysis: Based on the interaction of electromagnetic radiation with the analyte's atoms and molecules.

Steps in Quantitative analysis:

The important steps involved in determination are:

- i) Procurement of samples
- ii) Its conversion to measurable state
- iii) Measurement of desired constituent
- iv) Calculation and interpretation of numerical data.

The most difficult problem is the isolation, before the measurement step. The important steps encountered are:

(a) **Sampling:** It should be representative of the mass of the material. This is possible provided the material is reasonably pure and is homogeneous in nature.

(b) Conversion of desired constituent to measurable form: This step involves method of separation. The selection of the separation technique for a specific situation will depend upon a number of factors. Such selection is generally decided on the basis of accuracy and the precision required.

95665 35080

(c) Measurement of desired constituent: Any physical or chemical property can be used as a means of qualitative identification and quantitative measurement or both. If the property is specific and selective for measurement, then separation and pretreatment of the sample can be minimized, e.g. analysis involving atomic absorption spectroscopy.

(d) Calculation and interpretation of analytical data: An analysis is not complete until the results have been expressed in such a manner that the person for whom the results are intended can understand their significance. In recent years greater attention has been paid to statistical techniques both in development and in assaying the value of the final analytical results. This has led to the establishment of a new branch of science termed as Chemometrics.

Statistical measures of Data:

In analytical chemistry, the mean and median are both statistical measures used to characterize measurements and results Statistical measures like the mean, median, and standard deviation are used to quantify errors, precision, and accuracy. In reporting results, it's important to include the standard deviation to indicate the sample variance.

8.1.2. MEAN (x):

Mean or average is the quotient obtained when the sum of a set of replicate measurements by then number of individual results in the set.

$$\frac{1}{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

Example:

Calculate the mean for the following set of values 5, 10 & 15.

Mean =
$$\bar{x} = \frac{5+10+15}{3} = 30/3 = 10$$

To calculate the mean, we add together the results for all measurements 3.080, 3.094, 3.107, 3.056, 3.112, 3.174 & 3.198

x = 3.080 + 3.094 + 3.107 + 3.056 + 3.112 + 3.174 + 3.198 = 21.821g

7

\bar{x} = 3.117 g

8.1.3. MEDIAN (M):

The median is the average (or) middle value in a set. For an odd number of values, the middle value is the median and for even number values, the average of the middle pair gives the median.

Example:

i) For the odd values 18, 19, 20, 21 & 22.

Median
$$(M) = 20$$

ii) For the even values 18, 19, 20, 21, 22 & 23

Median (M) = 20+21 / 2 = 20.5

8.1.3.1. MEAN DEVIATION (\overline{d}):

The mean deviation of a value in a set of values is the average of the deviations of all the individual values from their average.

$$\overline{d} = \frac{d_1 + d_2 + d_3 + \dots + d_n}{n}$$

Example:

Calculate the mean deviation for the following set of values: 30.42, 30.32 and 30.22

Solution:

The following steps should be used for calculating mean deviation.

- i) The average of the given set of values is calculated.
- ii) The deviation of each value from the average is calculated.
- iii) The average of all these deviation (ignoring signs) gives the average deviation.

Average = 30.42 + 30.32 + 30.22

 \bar{x} = 30.32

S. No	Value x _i	$ x_i - \overline{x} = \overline{d}$	
1.	30.42	30.42 - 30.32 = 0.10	
2.	30.32	30.32 - 30.32 = 0	
3.	30.22	30.22 - 30.32 = 0.10	

Total
$$= 0.20$$

Mean deviation = 0.20

If the mean deviation of a set of measurements is small it means that the average of that set is nearly precise.

	EX	(ERCISE: 2		
1. Mean of the da	ta set: 3, 7, 5, 9, 2 is			
A) 4.5	B) 5.2	C) 5	D) 6	
2. Which of the fo	ollowing is true abou	t the median of a da	ataset?	
A) The median is	always equal to the n	nean.		TCA
B) The median is	the middle value whe	n the data is ordered	d.	
C) The median is	the sum of all values	divided by the total r	number of values	.
D) The median c	annot be used with an	odd number of value	es.	
3. Calculate the n	nedian of the data se	et: 12, 18, 24, 30, 36,	, 42	
A) 24	B) 30	C) 18	D) 36	
4. If the data set of	consists of the numb	oers: 8, 10, 12, 14, 1	6, what is the m	ean?
A) 12	B) 13	C) 10	D) 14	
5. Which of the fo	ollowing is true abou	t the relationship b	etween mean a	nd median in
a skewed distribu	ution?			
A) In a negatively	/ skewed distribution,	the mean is greater t	than the median.	
B) In a positively	skewed distribution, the	ne mean is less than	the median.	
C) In a symmetrie	cal distribution, the me	an and median are e	equal.	
D) The mean and	median are never equ	al.		
6. For the data se	et: 5, 7, 10, 12, 15, wh	at is the median?		
A) 12	B) 10	C) 7	D) 9	
7. Calculate mean	n of the data set: 1, 3	, 3, 6, 7		
A) 4	B) 5	C) 6	D) 4.2	
8. For the data se	et: 2, 3, 5, 7, 11, 13, w	hat is the median?		
A) 5	B) 7	C) 6	D) 8	
9. If the dataset is	s: 3, 5, 7, 10, 12, 14, v	vhat is the median?)	
A) 8	B) 9	C) 7	D) 10	
10. If the median	of a data set is 20, w	hat can be inferred	?	
A) The data set is	s symmetrical.			
B) The sum of all	values equals 20.			
C) 50% of the va	lues are less than or e	equal to 20.		

D) The mean is always greater than 20.

8.1.4. PRECISION:

Definition:

It is the degree of agreement between two (or) more measured value of a property under identical conditions.

Explanation:

Let the weight of a silica crucible be 25.1234 g when weighed in a particular set of conditions. If the same crucible is weighed under identical conditions and if the weight got is the same, then we say that there is precision in the weighing. Thus if a value is reproducible, then it called a precise value.

Method of expressing precision:

Precision is expressed in terms of absolute method (or) relative method.

i. Absolute method:

The precision is expressed in terms of mean deviation in this method. The smaller the value of average mean deviation the greater will be the precision.

ii. Relative method:

The precision is expressed in terms of percentage deviation from the mean of a set of values.

Percentage deviation from the mean =
$$\frac{x - x_i}{Mean} \times 100$$

Where,

- *x* -- Mean of a set of values
- *x*_i -- Particular value

Terms of Precision:

There are three terms, widely used to describe the Precision of a set of replicate

- i. Standard Deviation
- ii. Variance
- iii. Co-efficient of variation

8.1.5. STANDARD DEVIATION(σ):

Definition:

It is the square root of the quotient obtained by dividing the sum of the squares of the individual deviations from their mean by the number of measurements made.

$$\sigma = \frac{\sqrt{d_1^2 + d_2^2 + \dots + d_n^2}}{n - 1}$$

95665 35080

Explanation:

The following steps should be used to calculate standard deviation.

- i) The mean (\bar{x}) is calculated.
- ii) The individual deviation of each measurement from the average $(x_i \overline{x})$ is calculated.
- iii) Each individual deviation is squared $(x_i x_i)^2$
- iv) All the individual deviation square is added $\sum (x_i \bar{x})^2$
- v) The value obtained from step (4) is divided by the number of measurements made $\sum (x_i)$ $(-x^{-})^{2} \div n-1$

vi) The standard deviation
$$\sigma = \sqrt{\frac{\sum(x_i - \overline{x})^2}{n-1}}$$

viii) For small number of measurements 'S' = $\sqrt{\frac{\sum(x_i - \overline{x})^2}{n-1}}$ TCA

Example:

Calculate the standard deviation for the following set of values 92.10; 92.50; 92.70; 92.80 & 92.90.

i) Mean (or) average = 92.10 + 92.50 + 92.70 + 92.80 + 92.90

$$\bar{x} = 92.60$$

ii) Calculation of
$$|x_i - \overline{x}|$$
 and $|x_i - \overline{x}|^2$

S. No	Value x _i	$ x_i - \overline{x} = \overline{d}$	$\left x_{i}-\overline{x}\right ^{2}=\overline{d}^{2}$
1.	92.10	92.10 - 92.60 = 0.50	0.25
2.	92.50	92.50 - 92.60 = 0.10	0.01
3.	92.70	92.70 - 92.60 = 0.10	0.01
4.	92.80	92.80 - 92.60 = 0.20	0.04
5.	92.90	92.90 - 92.60 = 0.30	0.09

iii)
$$\sum (x_i - \overline{x})^2 = 0.25 + 0.01 + 0.01 + 0.04 + 0.09 = 0.40$$

iv)
$$\frac{\sum (x_i - \overline{x})^2}{n-1} = \frac{0.40}{5-1} = 0.10$$

v)
$$S = \sqrt{\frac{\sum(x_i - \bar{x})^2}{n - 1}} = \sqrt{0.1}$$

S = 0.3162

Variance:

The Square of the standard deviation is called variance. It is denoted by S². It is also important in statistical calculations.

Co-efficient of Variation:

The Co-efficient of variation(C>V) is an accurate measure of the precision and is given by,

C.V= S ×100%

Where, S=Standard deviation, X =data asset mean value

8.1.6. ACCURACY:

Definition:

It is the degree agreement between the measured value and the true value of a property.

Explanation with example:

The accuracy of a measurement is how close a result comes to the true value. Determining the accuracy of a measurement usually requires calibration of the analytical method with a known standard.

As per analytical data available the solubility product of CaSO₄ is 2.4×10^{-5} mol² dm⁻. If an analyst gets the same experimental (or) measured value then it is called as the accuracy of the result. If it differs, then we calculate the deviation. This deviation gives a measure of the accuracy of experiment.

Methods of expressing accuracy:

Accuracy is expressed in terms of absolute error (or) relative error. The lower these values are, the more will be the accuracy.

Absolute error (E):

It is defined as the difference between the accepted value (x_t) and the observed value (x_i) .

$$\mathbf{E} = \mathbf{x}\mathbf{i} - \mathbf{x}_{t}$$

Relative error (RE):

It is the error percentage of the acceptable value.

RE = E / $x_t \times 100$ RE = $x_i - x_t / x_t \times 100$

Explanation:

The dissociation constant of acetic acid at 25°C is 1.75×10^{-5} . It is the accepted value (*x*t). A student determines it as 1.80×10^{-5} . It is the observed value (*x*i).

Absolute error (E) = $xi - x_t$

= 1.80 x 10⁻⁵ - 1.75 x 10⁻⁵

 $E = 0.05 \times 10^{-5}$

Relative error (RE) = $xi - x_t / x_t \times 100$

= 0.05 x 10⁻⁵ / 1.75 x 10⁻⁵ x 100

RE = 2.86 %

Differences:

S.no	Precision	Accuracy
1.	It is the degree of agreement between two (or) more measured value of a property under identical conditions.	It is the degree agreement between the measured value and the true value of a property.
2.	It may be achieved	It is never known
3.	Expresses the reproducibility of the results	Expresses correctness of a measurement

13

1. Accuracy means ------

A) The degree to which repeated measurements under unchanged conditions show the same results.

- B) The degree to which a measured value agrees with the true value.
- C) The spread of measurements around the true value.
- D) The closeness of measurements to each other.

2. Which of the following best describes precision?

- A) The closeness of a measurement to the true value.
- B) The closeness of multiple measurements to each other.
- C) The ability to measure the true value.
- D) The difference between the maximum and minimum values in a set of measurements.

3. If a set of measurements is consistently close to each other but far from the true value, they are:

- A) Accurate and precise. B) Accurate but not precise.
- C) Not accurate but precise. D) Neither accurate nor precise.

4. -----an example of high precision but low accuracy

- A) Measurements are spread out but close to the true value.
- B) Measurements are clustered close to each other but far from the true value.
- C) Measurements are scattered and far from the true value.
- D) All measurements are identical and correct.

5. Which of the following would indicate both high accuracy and high precision?

- A) Measurements are all close to each other and close to the true value.
- B) Measurements are all far from each other but close to the true value.
- C) Measurements are all close to each other but far from the true value.
- D) Measurements are scattered far from each other and far from the true value.

6. A set of measurements has a high degree of accuracy but low precision. What does this mean?

- A) The measurements are close to the true value but vary widely.
- B) The measurements are far from the true value but consistent.
- C) The measurements are both close to each other and the true value.
- D) The measurements are neither accurate nor precise.

95665 35080

இன்றைய TRB பயிற்சியாளரே நாளைய அரசு பள்ளி ஆசிரியரே!

Teacher's Care Academy கடந்த 14 ஆண்டுகளாக TRB தேர்வுகளுக்கான சிறப்பு பயிற்சியை வழங்கி வருகிறது. இதுவரை 10,000-க்கும் மேற்பட்ட ஆசிரியர்களை அரசு வேலைகளில் வெற்றிகரமாக நியமிக்க உதவியதில் நாங்கள் பெருமிதம் கொள்கிறோம். எங்கள் நிறுவனத்தில் அனைத்து TRB தேர்வுகளுக்கும் விரிவான பயிற்சிகள் உள்ளன, அவை:

- PGTRB
- UGTRB
- SGT
- POLYTECHNIC TRB
- **BEO**
- TET Paper I & II
- College TRB
- Special Teachers

கூடுதலாக, தலிழ்நாடு அரசு இப்போது அனைத்து அரசு பணிக்கான தேர்வாணையங்களுக்கு (TRB, TNPSC, MRB, TNUSRB) தலிழ் லொழி கடாய தகுதி தேர்வு (Tamil Compulsory Exam) முதற்கடே தேர்வாக அறிவித்துள்ளது இதற்காக தலிழ் லொழி கடோய தகுதி தேர்வு என்ற புத்தகத்தை பிரத்தியேகமாக உங்கள் Teacher's Care Academy வெளியிடீடுள்ளது. இந்த புத்தகம் அமேசானிலும் கீடைக்கிறது ஆனால் எங்களை நேரடியாக தொடர்பு கொண்டு வாங்கும் போது உங்களுக்கு கூடுதல் தள்ளுபடி கிடைக்கும்

www.tcaexamguide.com (95665 35080; 9786269980; 76399 67359; 93602 68118)

<u>PGTRB</u>

PGTRB தேந்கிற்கு நாங்கள் அனைத்து மொழி பாடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறோம் அதாவது

- 📥 Tamil
- 📥 English
- Mathematics
- 📥 Physics
- 🖊 Chemistry
- 📥 Botany
- 📥 Zoology
- 🖊 Economics
- 🖊 Commerce
- **4** Computer Science
- 📥 History

பேற்கண்ட அனைத்து படப்பிரிவுகளுக்கான Study Material-களுடன் Psychology, Tamil Eligibility Book, Question Bank மற்றும் General Knowldge Material-களும் வழங்கப்படும்

<u>TET (Teachers Eligibility Test)</u>

TET தேர்விற்கு நம் Teachers Care Academy-யில் Paper I மற்றும் Paper II என இரண்டு தாள்களுக்கும் பிரத்தியேகமாக பயிற்சிகளை வழங்குகிறோம்

இதற்கு தமிழ்நாடு அரசால் வழங்கப்படீடுள்ள பள்ளி பாட புத்தகத்தில் இருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குகிறோம்

மேலும் Psychology-க்கு TRB-ஆல் வழங்கப்படீடுள்ள பாடத்திடேத்தை பின்பற்றி பல்வேறு Reference Book-லிருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குகிறோம்

UGTRB

TET கேநீர்வில் வெற்றி பெற்ற ஆசிரியரீகளுக்கு நடத்தப்படும் UGTRB போடீடி தேரீவுக்காக_அனைத்து மொழி பாடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறோம் அதாவது

- 📥 Tamil
- 📥 English
- 🖊 Mathematics
- 🖊 Physics
- 🖊 Chemistry
- 📥 Botany
- 📥 Zoology
- 📥 History
- 🖊 Geography

<u>SGTRB</u>

TET கேநீனில் வெற்றி பெற்ற ஆசிரியர்களுக்கு நடத்தப்படும் SGTRB போடீடி தேர்வுக்காக தமிழ்நாடு அரசால் வழங்கப்படீடுள்ள பள்ளி பாட புத்தகத்தில் இருந்து குறிப்புகளை எடுத்து Study Material-களாக வழங்குகிறோம்

BEO

BEO தெர்வுக்காக TRB-ஆல் பாடத்திடேம் வெளியிடப்படீடுள்ளது அந்த பாடத்திடேத்தின் அடிப்படையில் அனைத்து பாடத்திற்கும் உங்கள் Teachers Care Academy அனை (Unit-Wise) வாரியாக Study Material-களை வழங்குகிறது.

POLYTECHNIC TRB

Polytechnic தேர்விற்காக உங்கள் Teachers Care Academy பின்வரும் மொழி பாடத்திற்கு பயிற்சிகளை வழங்கி வருகிறது. அதாவது,

- 📥 Civil
- 📥 EEE
- 📥 ECE
- 📥 CSE
- 🖊 Mechanical
- 📥 English
- **4** Mathematics
- 📥 Physics
- **4** Chemistry

College TRB

தமிழ்நாடிடில் அரசு கல்லூரிகளில் காலியாக உள்ள உதவி பேராசிரியர் பணிக்கு TRB வெகு விரைவில் போடிடித் தேர்வை நடத்த இருக்கிறது

அந்த தேர்வுக்காக நம் Teachers Care Academy-யில் பின்வரும் மொழி பாடத் திடீடத்திற்கும் பயிற்சிகளை வழங்கி வருகிறது

- 📥 Tamil
- 📥 English
- 🖊 Mathematics
- 📥 Physics
- 📥 Chemistry
- 📥 Botany
- 🖊 Zoology
- 🖊 Economics
- 🖊 Commerce
- 🖊 Computer Science
- 📥 History
- 🖊 Geography

Special Teachers

TRB-ஆல் நடத்தப்படும் சிறப்பாசிரியர் தேர்வுக்காக நம் Teachers Care Academy-யில் பின்வரும் பாடத்திடீடத்திற்கு பிரத்தியேகமாக பயிற்சிகள் வழங்கப்படீடு வருகிறது. அதாவது,

- 📥 Sewing
- 📥 Drawing
- 📥 Music
- 🖊 PET

பெற்கண்ட அனைத்து தேர்வுகளுக்கும் உங்கள் Teachers Care Academy பலலிதமான பயிற்சிகளை வழங்குகிறது, அவை

இந்த ஆண்டு (2024) TNPSC Batch-யும் அறிமுகம் செய்திருப்பதில் நாங்கள் பெருமிதம் கொள்கிறோம். எங்கள் வழிகாடீடுதல் வரவிருக்கும் தேர்வுகளில் நீங்கள் வெற்றி பெற உதவும் என நாங்கள் உறுதியாக நம்புகிறோம்.

உங்கள் அரசு ஆசிரியர் பணி கனவு நிறைகவற வாழ்த்துக்கள்!

அன்புடன்,

Teacher's Care Academy

Teachers care Academy is the foremost coaching Institution for various competitive examinations such as P.G.TRB, TET Papers I &II TNPSC including special Teachers Eligibility Test. The Academy was established on 5th April 2013 by learned energetic and multifaceted chairperson Mrs. RAVIMAGESHWARI in the holy temple town of Kanchipuram.

Our Other Competitive Exam. Guides

- PG-TRB (Tamil, English, Mathematics, History, Physics, Chemistry, Commerce, Economics, Botany, Zoology)
- Polytechnic-TRB (English, Mathematics, Physics, Chemistry, CSE, ECE, Civil, EEE, Mech) ٠
- \$ Computer Instructor Grade-1
- * **Block Educational Officer**
- Teachers Eligibility Test (TET Paper-1 & Paper-2) & UG-TRB ٠
- ٠ TNEB - Assessor
- ٠ Tamil Nadu - Forest Guard
- TNPSC (Group-1, Group-2, Group-3, Group-4) 4
- NEET ...

Teachers Care Academy

tcaexamguide

www.tcaexamguide.com

Teachers Care Publication

38/23, Vaigundaperumal Koil Street, Kanchipuram-1 Mobile : 95665 35080, 97862 69980 Help Line Numbers : 9360268118 7639967359

Edition